当前位置: 首页 > news >正文

Netty深入浅出(无处不在的IO)

为什么要有Netty

Netty是为了解决网络编程的复杂性和提供易于使用、高性能和可扩展的框架而开发的。它通过提供一组可重用的组件来处理网络通信的低级细节,例如套接字管理、线程和缓冲,简化了开发网络应用程序的过程。这使开发人员可以专注于应用程序逻辑而不是网络编程的复杂性。此外,Netty支持各种协议和传输机制,使其成为构建各种网络应用程序的多功能选择。

Java中的IO模型

Netty是一个Java编写的网络IO库,Netty在其底层仍然使用Java I/O库,如java.nio包。它使用了Java NIO(New I/O)的一些特性,例如非阻塞通道(Channel)、选择器(Selector)等,以实现高性能的网络通信。

三种通信模型

  • BIO (Blocking I/O): 同步阻塞I/O模式,数据的读取写入必须阻塞在一个线程内等待其完成。在活动连接数不是特别高(小于单机1000)的情况下,这种模型是比较不错的。线程池本身就是一个天然的漏斗,可以缓冲一些系统处理不了的连接或请求。

  • NIO (New I/O): NIO是一种同步非阻塞的I/O模型,在Java 1.4 中引入了NIO框架。NIO提供了与传统BIO模型中的 SocketServerSocket 相对应的 SocketChannelServerSocketChannel 两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。

  • AIO (Asynchronous I/O): AIO 也就是 NIO 2。在 Java 7 中引入了 NIO 的改进版 NIO 2,它是异步非阻塞的IO模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。AIO 是异步IO的缩写,虽然 NIO 在网络操作中,提供了非阻塞的方法,但是 NIO 的 IO 行为还是同步的。对于 NIO 来说,我们的业务线程是在 IO 操作准备好时,得到通知,接着就由这个线程自行进行 IO 操作,IO操作本身是同步的。

NIO

示例代码
  • 服务端
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;public class NIOServer {public static void main(String[] args) throws IOException {// 创建ServerSocketChannelServerSocketChannel serverSocketChannel = ServerSocketChannel.open();serverSocketChannel.socket().bind(new InetSocketAddress(8080));serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式Selector selector = Selector.open();serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);System.out.println("Server is listening on port 8080...");while (true) {int readyChannels = selector.select();if (readyChannels == 0) {continue;}Set<SelectionKey> selectedKeys = selector.selectedKeys();Iterator<SelectionKey> keyIterator = selectedKeys.iterator();while (keyIterator.hasNext()) {SelectionKey key = keyIterator.next();if (key.isAcceptable()) {SocketChannel clientChannel = serverSocketChannel.accept();clientChannel.configureBlocking(false);clientChannel.register(selector, SelectionKey.OP_READ);System.out.println("Accepted connection from " + clientChannel.getRemoteAddress());} else if (key.isReadable()) {SocketChannel clientChannel = (SocketChannel) key.channel();ByteBuffer buffer = ByteBuffer.allocate(1024);int bytesRead = clientChannel.read(buffer);if (bytesRead == -1) {clientChannel.close();System.out.println("Client disconnected.");} else if (bytesRead > 0) {buffer.flip();while (buffer.hasRemaining()) {clientChannel.write(buffer); // 回显客户端发送的数据}buffer.clear();}}keyIterator.remove();}}}
}
  • 客户端
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;public class NIOClient {public static void main(String[] args) throws IOException {SocketChannel socketChannel = SocketChannel.open();socketChannel.connect(new InetSocketAddress("localhost", 8080));String message = "Hello, NIO Server!";ByteBuffer buffer = ByteBuffer.wrap(message.getBytes());socketChannel.write(buffer); // 发送消息给服务器ByteBuffer responseBuffer = ByteBuffer.allocate(1024);int bytesRead = socketChannel.read(responseBuffer); // 读取服务器的响应if (bytesRead != -1) {responseBuffer.flip();byte[] bytes = new byte[responseBuffer.remaining()];responseBuffer.get(bytes);String response = new String(bytes);System.out.println("Received from server: " + response);}socketChannel.close(); // 关闭客户端连接}
}

AIO

示例代码
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousChannelGroup;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.Executors;public class AIOTimeServer {public static void main(String[] args) throws IOException {int port = 8080;AsynchronousChannelGroup group = AsynchronousChannelGroup.withThreadPool(Executors.newFixedThreadPool(10));final AsynchronousServerSocketChannel serverChannel = AsynchronousServerSocketChannel.open(group);serverChannel.bind(new InetSocketAddress(port));System.out.println("Server is listening on port " + port);serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Void>() {@Overridepublic void completed(AsynchronousSocketChannel clientChannel, Void attachment) {serverChannel.accept(null, this); // 接受下一个连接String response = "Current time: " + System.currentTimeMillis();ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());clientChannel.write(buffer, null, new CompletionHandler<Integer, Void>() {@Overridepublic void completed(Integer result, Void attachment) {try {clientChannel.close();} catch (IOException e) {e.printStackTrace();}}@Overridepublic void failed(Throwable exc, Void attachment) {exc.printStackTrace();try {clientChannel.close();} catch (IOException e) {e.printStackTrace();}}});}@Overridepublic void failed(Throwable exc, Void attachment) {exc.printStackTrace();}});try {group.awaitTermination(Long.MAX_VALUE, java.util.concurrent.TimeUnit.SECONDS);} catch (InterruptedException e) {e.printStackTrace();}}
}

为什么Netty依旧使用NIO的API?

Netty 不看重 Windows 上的使用,在 Linux 系统上,AIO 的底层实现仍使用 EPOLL(后续会讲),没有很好实现 AIO,因此在性能上没有明显的优势,而且被 JDK 封装了一层不容易深度优化。

Linux的IO模型

Java的I/O模型是在Java编程语言层面的抽象,而Linux的I/O模型是操作系统内核层面的实现。因此,虽然它们有一些相似之处,但并不是完全相同的概念。

LINUX五种IO模型

同步和异步:同步和异步是针对应用程序和内核的交互而言的,同步指的是用户进程触发IO 操作并等待或者轮询的去查看IO 操作是否就绪,而异步是指用户进程触发IO 操作以后便开始做自己的事情,而当IO 操作已经完成的时候会得到IO 完成的通知。

阻塞和非阻塞:阻塞和非阻塞是针对于进程在访问数据的时候,根据IO操作的就绪状态来采取的不同方式,说白了是一种读取或者写入操作方法的实现方式,阻塞方式下读取或者写入函数将一直等待,而非阻塞方式下,读取或者写入方法会立即返回一个状态值。

  1. 阻塞式IO

  2. 非阻塞式IO

  3. IO多路复用

  4. 信号驱动

  5. 异步IO

前面四种IO模型实际上都属于同步IO,只有最后一种是真正的异步IO,因为无论是多路复用IO还是信号驱动模型,IO操作的第2个阶段都会引起用户线程阻塞,也就是内核进行数据拷贝的过程都会让用户线程阻塞。

从图中可以看出用户态与内核态的切换,那么什么是用户/内核态呢?这也是下面的内容。

用户态与内核态

I/O(Input/Output,输入/输出)和用户态与内核态之间存在密切的关系,特别是在操作系统中。用户态和内核态是操作系统中的两个不同特权级别,它们用于管理和保护计算机系统的资源。以下是关于I/O、用户态和内核态之间的关系的重要信息:

  1. I/O操作涉及用户态和内核态

    • I/O操作包括从应用程序到外部设备(如磁盘、网络、键盘、显示器等)的数据传输。这些操作通常涉及到用户态和内核态之间的切换。
    • 当应用程序需要执行I/O操作时,它会调用操作系统提供的I/O系统调用(例如,读取文件或发送数据包)。这些系统调用是在用户态执行的。
    • 操作系统内核负责管理系统资源和I/O设备,因此在执行I/O操作时,控制必须从用户态切换到内核态,以便内核可以直接访问硬件资源。
  2. 用户态和内核态的切换

    • 用户态和内核态是不同的CPU执行模式。在用户态下,应用程序只能访问有限的资源,而在内核态下,操作系统内核可以访问系统的全部资源。
    • 当应用程序需要执行需要特权访问的操作,例如执行系统调用或访问设备驱动程序,它必须通过软中断或异常将控制权切换到内核态。这个切换是由操作系统的内核来处理的。
    • 用户态到内核态的切换会涉及一些开销,因为需要保存和恢复CPU寄存器、切换堆栈等操作。因此,频繁的切换会影响性能。
  3. 内核态的I/O处理

    • 一旦控制切换到内核态,操作系统内核就可以执行I/O操作。它会管理设备驱动程序、缓冲区、中断处理等细节,以确保数据的正确传输。
    • 内核还会维护I/O请求队列,以有效地处理多个I/O请求。
  4. 异步I/O和用户态I/O

    • 异步I/O是一种I/O模型,允许应用程序继续执行其他任务,而不必等待I/O操作完成。在这种情况下,通常使用异步I/O库来管理I/O操作,而不需要频繁地切换用户态和内核态。
    • 异步I/O通常通过回调函数或事件通知机制来处理I/O完成事件。

I/O操作涉及用户态和内核态之间的切换,因为操作系统内核必须管理和控制I/O设备。这个切换是操作系统的核心功能之一,用于确保计算机系统的稳定性、安全性和性能。不同的I/O模型可以影响用户态和内核态之间的切换方式和频率。说到内核态切换,下面不得不介绍的就是零拷贝。

Zero Copy(零拷贝)

Netty与零拷贝(Zero-Copy)之间有密切的关系,因为Netty是一个网络应用框架,专门设计用于高性能的网络通信,而零拷贝是一项技术,可以用于提高数据传输的效率,特别是在网络通信中。

以下是Netty与零拷贝的关系和如何在Netty中利用零拷贝技术的一些重要信息:

Netty的高性能特性:Netty被设计为高性能的网络应用框架,它旨在处理大量并发连接和高吞吐量的网络通信。为了实现这一目标,Netty采用了多种性能优化技术,其中之一就是零拷贝。

零拷贝是一种优化技术,旨在减少数据在内存之间的复制次数。传统的数据传输通常涉及将数据从一个缓冲区复制到另一个缓冲区,这会引入额外的CPU和内存开销。零拷贝技术通过操作系统或硬件支持,允许数据在不复制的情况下从一个地方传输到另一个地方,从而提高了数据传输的效率。
   
`ByteBuf`是Netty的自定义缓冲区类型,它支持零拷贝和引用计数等特性。在Netty中,`ByteBuf`可以在数据传输时直接暴露底层数据,而不需要进行数据复制,从而减少了CPU和内存开销。

零拷贝的实现

传统IO

read:将数据从磁盘通过DMA读取到内核缓存区中,在拷贝到用户缓冲区

write: 先将数据写入到socket缓冲区中,经过DMA写入网卡设备

在这里插入图片描述

4次切换,4次拷贝

虚拟内存 mmap

1.虚拟内存空间可以远远大于物理内存空间
2.多个虚拟内存可以指向同一个物理地址


正是多个虚拟内存可以指向同一个物理地址,可以把内核空间和用户空间的虚拟地址映射到同一个物理地址,这样的话,就可以减少IO的数据拷贝次数。用户态可以直接访问内核态的数据。

4次切换,3次拷贝

sendFile

sendfile表示在两个文件描述符之间传输数据,它是在操作系统内核中操作的,避免了数据从内核缓冲区和用户缓冲区之间的拷贝操作。

在这里插入图片描述

2次切换,3次拷贝

sendfile + DMA scatter/gather实现的零拷贝

linux2.4版本后,对sendfile做了优化升级,引入SG-DMA技术,其实就是对DMA拷贝加入了scatter/gather操作,它可以直接从内核空间缓冲区中将数据读取到网卡,这样的话还可以省去CPU拷贝。

在这里插入图片描述

2次切换,2次拷贝,CPU全程不参与数据搬运

直接内存 Direct ByteBuf

Netty通常使用直接内存(Direct Memory)来提高性能。直接内存是一种特殊的内存分配方式,不同于Java堆内存。

  1. ByteBuf与直接内存:Netty中的ByteBuf是一个用于处理字节数据的缓冲区抽象。ByteBuf可以使用直接内存分配,这称为"Direct ByteBuf"。直接内存分配意味着ByteBuf中的数据存储在堆外内存,而不是在Java堆中。

  2. 减少内存复制:在进行网络数据传输时,数据通常需要从应用程序的缓冲区复制到操作系统内核缓冲区,然后再从内核缓冲区复制到网络适配器。使用直接内存,可以在这些步骤中减少或消除数据复制,提高了性能。

  3. 零拷贝:直接内存可以与零拷贝相结合,使数据可以在应用程序和操作系统之间进行高效的传输。

  4. 缓冲区池:Netty通常使用池化的ByteBuf来管理直接内存的分配和释放。这种方式可以避免频繁地分配和释放直接内存,提高了内存管理的效率。

  5. 内存管理控制:Netty提供了一些工具和机制,帮助开发者有效地管理直接内存,包括手动释放、自动回收等。

示例代码
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;public class NettyDirectMemoryExample {public static void main(String[] args) throws InterruptedException {// 创建两个EventLoopGroup,一个用于接受客户端连接,一个用于处理客户端请求NioEventLoopGroup bossGroup = new NioEventLoopGroup(1);NioEventLoopGroup workerGroup = new NioEventLoopGroup();try {// 创建ServerBootstrapServerBootstrap serverBootstrap = new ServerBootstrap();serverBootstrap.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).childHandler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel ch) {ch.pipeline().addLast(new EchoServerHandler());}});// 绑定端口并启动服务器serverBootstrap.bind(8080).sync().channel().closeFuture().sync();} finally {bossGroup.shutdownGracefully();workerGroup.shutdownGracefully();}}// 自定义ChannelHandler处理客户端消息static class EchoServerHandler extends ChannelInboundHandlerAdapter {@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {ByteBuf in = (ByteBuf) msg;ByteBuf out = Unpooled.directBuffer(); // 创建Direct ByteBuftry {out.writeBytes(in); // 将接收到的数据写入Direct ByteBufctx.write(out); // 写入回应数据到客户端ctx.flush();} finally {in.release(); // 释放接收缓冲区out.release(); // 释放Direct ByteBuf}}@Overridepublic void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {cause.printStackTrace();ctx.close();}}
}

使用直接内存需要谨慎管理,以避免内存泄漏和其他问题。

相关文章:

Netty深入浅出(无处不在的IO)

为什么要有Netty Netty是为了解决网络编程的复杂性和提供易于使用、高性能和可扩展的框架而开发的。它通过提供一组可重用的组件来处理网络通信的低级细节&#xff0c;例如套接字管理、线程和缓冲&#xff0c;简化了开发网络应用程序的过程。这使开发人员可以专注于应用程序逻…...

华为C语言编程规范(2W字总结)

1、代码总体原则 1、清晰第一 清晰性是易于维护、易于重构的程序必需具备的特征。代码首先是给人读的&#xff0c;好的代码应当可以像文章一样发声朗诵出来。 目前软件维护期成本占整个生命周期成本的40%~90%。根据业界经验&#xff0c;维护期变更代码的成本&#xff0c;小型…...

操作系统学习笔记2

参考视频&#xff1a;操作系统 文章目录 1、进程管理逻辑图2、进程的由来3、进程引发的问题4、进程与程序的区别5、进程的特征6、进程的组织7、进程的状态与控制8、进程间的通信9、三级调度10、FCFS算法调度过程11、时间片轮转算法调度过程12、短作业有优先算法调度过程13、优…...

KylinOSv10系统k8s集群启动mysql5.7占用内存高的问题

问题现象 麒麟系统搭建k8s集群 mysql的pod启动失败 describe查看ommkill&#xff0c;放大limit资源限制到30G依旧启动失败 系统 报错信息 原因 内存占用太高 open_files_limit初始化太高 解决&#xff1a; 1、更换镜像 链接: https://pan.baidu.com/s/1b9uJLcc5Os0uDqD1e…...

c语言练习84:动态内存管理

动态内存管理 例题&#xff1a; 错误代码&#xff1a; #include<stdio.h> #include<stdlib.h> void GetMemory(char* p) {p (char*)malloc(100); } void Test(void) {char* str NULL;GetMemory(str);strcpy(str, "hello world");printf(str); } int …...

[Go版]设计模式——Template模版方法模式

目录 模板方法&#xff08;Template Method&#xff09;模式的说明核心思想设计优点 Go语言实现该模式的示例代码 模板方法&#xff08;Template Method&#xff09;模式的说明 核心思想 定义一个算法的骨架&#xff0c;将一些步骤的实现延迟到子类。 设计优点 将通用的模版…...

数据结构 | (四) Queue

队列 &#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出 FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为 队尾&#xff08; Tail/Rear &#xff09; 出队列&#xff1a;进行删除操…...

让照片人物开口说话,SadTalker 安装及使用(避坑指南)

AI技术突飞猛进&#xff0c;不断的改变着人们的工作和生活。数字人直播作为新兴形式&#xff0c;必将成为未来趋势&#xff0c;具有巨大的、广阔的、惊人的市场前景。它将不断融合创新技术和跨界合作&#xff0c;提供更具个性化和多样化的互动体验&#xff0c;成为未来的一种趋…...

系统架构设计:6 论软件质量保证及其应用

目录 一 软件质量保证SQA 1 制定SQA计划 2 参与但不负责开发项目的软件过程描述 3 评审...

vscode的窗口下拉显示行数不够

这是为了减少程序的空间占用而存在的一个设置。设置一下即可。 设置方法 在左上角文件&#xff0c;个人设置&#xff0c;设置中&#xff0c;&#xff08;或者用Ctrl&#xff0c;打开&#xff09; 输入terminal&#xff0c;找到bell duration&#xff0c;设置成1000。 参考…...

Linux UWB Stack实现——MCPS调度接口(数据结构)

MCPS&#xff08;MAC Common Part Sublayer&#xff0c;媒介访问控制&#xff08;Medium Access Control&#xff09;公共部分子层&#xff09;调度接口&#xff0c;文件&#xff1a;include\net\mcps802154_schedule.h。 MCPS访问方法 // MCPS 802154 访问方法 enum mcps8021…...

2023Q3数据安全政策、法规、标准及报告汇总(附下载)

数据安全处罚事件逐年升高&#xff0c;2023年呈爆发式增长。 截至2023年8月31日&#xff0c;南都大数据研究院通过各地行政执法公示平台、媒体报道等公开渠道收集到146起依据《数据安全法》作出行政处罚决定的案例。2021年公示5起&#xff0c;2022年公示11起&#xff0c;2023年…...

Ceph入门到精通-iptables 限制多个ip 的多个端口段访问

要使用iptables限制多个IP的多个端口范围的访问&#xff0c;可以使用以下命令&#xff1a; iptables -A INPUT -p tcp -m multiport --dports 端口段 -m iprange --src-range 起始IP-结束IP -j DROP上面的命令将添加一条规则到INPUT链中&#xff0c;该规则将禁止指定IP范围访问…...

【C/C++】STL——深度剖析vector容器

​&#x1f47b;内容专栏&#xff1a; C/C编程 &#x1f428;本文概括&#xff1a;vector的介绍与使用、深度剖析及模拟实现。 &#x1f43c;本文作者&#xff1a; 阿四啊 &#x1f438;发布时间&#xff1a;2023.10.8 一、vector的介绍与使用 1. vector的介绍 像string的学习…...

如何在idea中隐藏文件或文件夹

例如我想要隐藏如下文件 只需要点击file->settings editor->file types->ignores Files and Folders-> 然后按照图片点击顺序操作即可 添加完毕点击apply->ok 隐藏成功后效果如下&#xff1a;...

Scala第二十章节

Scala第二十章节 scala总目录 文档资料下载 章节目标 理解Akka并发编程框架简介掌握Akka入门案例掌握Akka定时任务代码实现掌握两个进程间通信的案例掌握简易版spark通信框架案例 1. Akka并发编程框架简介 1.1 Akka概述 Akka是一个用于构建高并发、分布式和可扩展的基于事…...

redis的持久化消息队列

Redis Stream Redis Stream 是 Redis 5.0 版本新增加的数据结构。 Redis Stream 主要用于消息队列&#xff08;MQ&#xff0c;Message Queue&#xff09;&#xff0c;Redis 本身是有一个 Redis 发布订阅 (pub/sub) 来实现消息队列的功能&#xff0c;但它有个缺点就是消息无法…...

分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测&#xff0…...

用 Pytorch 自己构建一个Transformer

一、说明 用pytorch自己构建一个transformer并不是难事,本篇使用pytorch随机生成五千个32位数的词向量做为源语言词表,再生成五千个32位数的词向量做为目标语言词表,让它们模拟翻译过程,transformer全部用pytorch实现,具备一定实战意义。 二、论文和概要 …...

Docker安装ActiveMQ

ActiveMQ简介 官网地址&#xff1a;https://activemq.apache.org/ 简介&#xff1a; ActiveMQ 是Apache出品&#xff0c;最流行的&#xff0c;能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...

LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考

目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候&#xff0c;显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...

uniapp获取当前位置和经纬度信息

1.1. 获取当前位置和经纬度信息&#xff08;需要配置高的SDK&#xff09; 调用uni-app官方API中的uni.chooseLocation()&#xff0c;即打开地图选择位置。 <button click"getAddress">获取定位</button> const getAddress () > {uni.chooseLocatio…...

NLP常用工具包

✨做一次按NLP项目常见工具的使用拆解 1. tokenizer from torchtext.data.utils import get_tokenizertokenizer get_tokenizer(basic_english) text_sample "Were going on an adventure! The weather is really nice today." tokens tokenizer(text_sample) p…...