当前位置: 首页 > news >正文

交通物流模型 | 基于双向时空自适应Transformer的城市交通流预测

城市交通流预测是智能交通系统的基石。现有方法侧重于时空依赖建模,而忽略了交通预测问题的两个内在特性。首先,不同预测任务的复杂性在不同的空间(如郊区与市中心)和时间(如高峰时段与非高峰时段)上分布不均匀。其次,对过去交通状况的回忆有利于对未来交通状况的预测。基于以上两个特性,作者提出了一个双向时空自适应Transformer(Bi-STAT)用于准确的交通流预测。Bi-STAT采用编码器-解码器框架,其中均含有一个空间自适应和时间自适应的Transformer结构。受第一个性质的启发,每个Transformer都根据任务的复杂性动态地处理流量流,具体来说,我们通过一种新的动态停止模块(DHM)的循环机制来实现这一点。每个Transformer使用共享参数进行迭代计算,直到DHM发出停止信号。受第二个特性启发,Bi-STAT使用一个解码器实现现在-过去的学习任务,另一个解码器实现现在-未来的预测任务。学习任务提供补充信息协助预测任务,以便更好地泛化。大量实验证明了Bi-STAT每个模块的有效性以及该模型的优越预测性能。

交通流预测旨在利用基于分布在城市道路上的大量传感器所记录的当前交通状况预测未来的交通状况(流量或速度)。由于复杂的时空依赖性,使这项任务充满挑战。空间上,附近道路的交通状况相互之间有动态的影响(或依赖);时间上,由于各种因素,如天气、高峰时间、周末和假日,交通状况呈现出难以捉摸的模式。由于这些挑战,现有模型专注于时空依赖性建模并在这方面取得进步,但他们忽略了交通预测问题的两个内在性质,这阻碍了现有方法成为更有效和准确的交通状况预测方法。
首先,不同预测任务在时间(高峰时段和平峰时段)和空间(郊区与市中心)上是不平衡的。如图1所示,1号路(市区࿰

相关文章:

交通物流模型 | 基于双向时空自适应Transformer的城市交通流预测

城市交通流预测是智能交通系统的基石。现有方法侧重于时空依赖建模,而忽略了交通预测问题的两个内在特性。首先,不同预测任务的复杂性在不同的空间(如郊区与市中心)和时间(如高峰时段与非高峰时段)上分布不均匀。其次,对过去交通状况的回忆有利于对未来交通状况的预测。基于…...

【香橙派-OpenCV-Torch-dlib】TF损坏变成RAW格式解决方案及python环境配置

前言 本文将介绍在香橙派(Orange Pi)开发板上进行软件配置和环境搭建的详细步骤,以便运行Python应用程序。这涵盖了以下主要内容: 获取所需软件:提供了香橙派操作系统和balenaEtcher工具的下载链接,以确保…...

HDMI协议介绍(五)--Audio

基础知识 I2S(inter-IC sound bus)飞利浦公司制定的标准,既规定了硬件接口规范,也规定了数字音频数据格式。 硬件接口规范 I2S接口有3个主要信号: 时钟信号 Serial Clock 串行时钟SCK,也叫位时钟(BCLK)&…...

Centos7中安装Jenkins教程

1.必须先配置jdk环境,安装jdk参考 Linux配置jdk 2.先卸载Jenkins # rpm卸载 rpm -e jenkins # 检查是否卸载成功 rpm -ql jenkins # 彻底删除残留文件 find / -iname jenkins | xargs -n 1000 rm -rf 3.安装Jenkins 在 /usr/ 目录下创建 jenkins文件夹 mkdir -p je…...

十一、WSGI与Web框架

目录 一、什么是WSGI1.1 WSGI接口的组成部分1.2 关于environ 二、简易的web框架实现2.1 文件结构2.2 在web/my_web.py定义动态响应内容2.3 在html/index.html中定义静态页面内容2.4 在web_server.py中实现web服务器框架2.5 测试 三、让简易的web框架动态请求支持多页面3.1 修改…...

[idekCTF 2022]Paywall - LFI+伪协议+filter_chain

[idekCTF 2022]Paywall 一、解题流程(一)、分析(二)、解题 二、思考总结 一、解题流程 (一)、分析 点击source可以看到源码,其中关键部分:if (isset($_GET[p])) {$article_content…...

Python 自动化Web测试

限于作者水平有限,以下内容可能是管窥之见,希望大家高抬贵手,且让我斗胆抛砖引玉。 公司产品迪备主要是通过网页操作来进行数据库的备份与恢复,监控与管理,因此在测试的过程中,可以用python测试脚本来模拟…...

MM-Camera架构-Preview 流程分析

目录 文章目录 1 log开的好,问题都能搞2 lib3 preview3.1 打开视频流3.1.1 cpp\_module\_start\_session3.1.2 cpp\_thread\_create3.1.3 cpp\_thread\_funcsundp-3.1 cpp\_hardware\_open\_subdev(ctrl->cpphw)sundp-3.2 cpp\_hardware\_process\_command(ctrl-…...

科普文章|一文了解平行链及其优势

平行链是一种可以连接到更大规模的区块链网络(波卡)的独立区块链。不同于传统区块链(如比特币和以太坊)是孤立的并且无法在本地相互通信,平行链与其他平行链并行运行,并且相互可以无缝通信。平行链还使用波…...

Tomcat 9.0.41在IDEA中乱码问题(IntelliJ IDEA 2022.1.3版本)

1. 乱码的产生是由于编码和解码的编码表不一致引起的。 2. 排查乱码原因 2.1 在idea中启动Tomcat时控制台乱码排查 Tomcat输出日志乱码: 首先查看IDEA控制台,检查发现默认编码是GBK。 再查看Tomcat日志(conf文件下logging.properties)的默…...

在Kubernetes中实现gRPC流量负载均衡

在尝试将gRPC服务部署到Kubernetes集群中时,一些用户(包括我)面临的挑战之一是实现适当的负载均衡。在深入了解如何平衡gRPC的方式之前,我们首先需要回答一个问题,即为什么需要平衡流量,如果Kubernetes已经…...

Floorplanning with Graph Attention

Floorplanning with Graph Attention DAC ’22 目录 Floorplanning with Graph Attention摘要1.简介2.相关工作3.问题公式化4. FLORA的方法4.1 解决方案概述4.2 C-谱聚类算法 4.3 基于GAT的模型4.4 合成训练数据集生成 摘要 布图规划一直是一个关键的物理设计任务&#xff0…...

centos7 配置coreboot编译环境 以及编译问题解决

需要的配置 (有的资源在国外可能需要翻墙) 操作系统: centos7.9 参考文章 coreboot源码分析之编译和运行coreboot - 知乎 //coreboot编译总说明 https://www.coreboot.org/Build_HOWTO#Requirements https://poe.com/ChatGPT 注意: 因为github不稳定 所以gitee为主 1. 下载…...

大型语言模型:RoBERTa — 一种鲁棒优化的 BERT 方法

一、介绍 BERT模型的出现导致了NLP的重大进展。BERT的架构源自Transformer,在各种下游任务上实现了最先进的结果:语言建模,下一句预测,问答,NER标记等。 大型语言模型:BERT — 来自变压器的双向编码器表示 …...

解析navicate数据库密码

在线运行地址:代码在线运行 - 在线工具 <?php class NavicatPassword {protected $version 0;protected $aesKey libcckeylibcckey;protected $aesIv libcciv libcciv ;protected $blowString 3DC5CA39;protected $blowKey null;protected $blowIv null;public func…...

mysql字段类型与oracle字段类型对应关系

MySQL与Oracle两种数据库在工作中&#xff0c;都是用的比较多的数据库&#xff0c;由于MySQL与Oracle在数据类型上有部分差异&#xff0c;在我们迁移数据库时&#xff0c;会遇上一定的麻烦&#xff0c;下面介绍MySQL与Oracle数据库数据类型的对应关系。 一、常见数据类型在MyS…...

linux 中 tar \ zip 解压错误后撤回

#zip zipinfo -1 path/xx.zip | xargs rm -rf#tar tar -tf xx.tar | xargs rm -rf...

对象图 UML从入门到放弃之四

1.劝退说明 对象图提供了系统在某个特定时刻的状态快照。这是一种有用的描述系统的方法&#xff0c;当系统的结构是动态构建起来而不是由其静态的类结构决定时&#xff0c;更是如此。不过&#xff0c;应该对画太多的对象图保持警惕。在大部分情况下&#xff0c;它们都可以从相应…...

FPGA实现HDMI输入转SDI视频输出,提供4套工程源码和技术支持

目录 1、前言免责声明 2、我目前已有的SDI编解码方案3、设计思路框架核模块解析设计框图IT6802解码芯片配置及采集ADV7611解码芯片配置及采集silicon9011解码芯片配置及采集纯verilog的HDMI 解码模块RGB888转YUV422SPMTE编码SDI模式图像缓存SPMTE SDIGTXGV8500 4、vivado工程1-…...

针对FTP的SSRF攻击

前言 ssrf中常用的协议有http&#xff0c;gopher等。但http协议在ssrf中的用处也仅限于访问内网页面&#xff0c;在可以crlf的情况下才有可能扩大攻击范围。gopher协议比较特殊&#xff0c;在部分环境下支持此协议&#xff0c;如&#xff1a;curl。但还有一些环境就不支持了&a…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...