当前位置: 首页 > news >正文

深度学习基础之参数量(3)

一般的CNN网络的参数量估计代码

class ResidualBlock(nn.Module):def __init__(self, in_planes, planes, norm_fn='group', stride=1):super(ResidualBlock, self).__init__()print(in_planes, planes, norm_fn, stride)self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)self.relu = nn.ReLU(inplace=True)num_groups = planes // 8if norm_fn == 'group':self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)if not stride == 1:self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)elif norm_fn == 'batch':self.norm1 = nn.BatchNorm2d(planes)self.norm2 = nn.BatchNorm2d(planes)if not stride == 1:self.norm3 = nn.BatchNorm2d(planes)elif norm_fn == 'instance':self.norm1 = nn.InstanceNorm2d(planes)self.norm2 = nn.InstanceNorm2d(planes)if not stride == 1:self.norm3 = nn.InstanceNorm2d(planes)elif norm_fn == 'none':self.norm1 = nn.Sequential()self.norm2 = nn.Sequential()if not stride == 1:self.norm3 = nn.Sequential()if stride == 1:self.downsample = Noneelse:self.downsample = nn.Sequential(nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)def forward(self, x):print(x.shape)#exit()y = xy = self.relu(self.norm1(self.conv1(y)))y = self.relu(self.norm2(self.conv2(y)))if self.downsample is not None:x = self.downsample(x)return self.relu(x + y)R=ResidualBlock(384, 384, norm_fn='instance', stride=1)
summary(R.to("cuda" if torch.cuda.is_available() else "cpu"), (384, 32, 32))

transformer结构的参数量的估计结果

import torch
import torch.nn as nn
from thop import profile
from torchsummary import summary# 定义一个简单的Transformer模型
class Transformer(nn.Module):def __init__(self, input_dim, hidden_dim, num_heads, num_layers):super(Transformer, self).__init__()self.embedding = nn.Embedding(input_dim, hidden_dim)self.transformer_layers = nn.Transformer(d_model=hidden_dim,nhead=num_heads,num_encoder_layers=num_layers,num_decoder_layers=num_layers)self.fc = nn.Linear(hidden_dim, input_dim)def forward(self, src, tgt):src = self.embedding(src)tgt = self.embedding(tgt)output = self.transformer_layers(src, tgt)output = self.fc(output)return output# 创建Transformer模型实例
model2 = Transformer(input_dim=512, hidden_dim=512, num_heads=8, num_layers=6)# 使用thop进行FLOPS估算
flops, params = profile(model2, inputs=(torch.randint(0, 512, (128,)), torch.randint(0, 512, (64,))))
print(f"FLOPS: {flops / 1e9} G FLOPS")  # 打印FLOPS,以十亿FLOPS(GFLOPS)为单位# 计算参数量并打印
num_params = sum(p.numel() for p in model2.parameters() if p.requires_grad)
print(f"Total number of trainable parameters: {num_params}")

相关文章:

深度学习基础之参数量(3)

一般的CNN网络的参数量估计代码 class ResidualBlock(nn.Module):def __init__(self, in_planes, planes, norm_fngroup, stride1):super(ResidualBlock, self).__init__()print(in_planes, planes, norm_fn, stride)self.conv1 nn.Conv2d(in_planes, planes, kernel_size3, …...

红队专题-从零开始VC++远程控制软件RAT-C/S-[2]界面编写及上线

红队专题 招募六边形战士队员1.课前回顾unicode编码 字符串 2.界面编程(下)对话框重载消息函数更改对话框同步更改 3.服务端上线,下线,以及客户端的资源销毁(上)添加socket 变量添加 socket 消息填补config信息创建线程函数 并运行添加Addhost添加 getIt…...

磁盘满了对日志打印(Logback)的影响

背景 我们生产环境有一个服务半夜报警:磁盘剩余空间不足10%,请及时处理。排查后发现是新上线的一个功能,日志打太多导致的,解决方法有很多,就不赘述了。领导担心报警不及时、或者报警遗漏,担心磁盘满了对线…...

【算法与数据结构】--算法基础--数据结构概述

一、什么是数据结构 数据结构是一种组织和存储数据的方式,它定义了数据之间的关系、操作和存储方式,以便有效地访问和修改数据。数据结构是计算机科学中的一个重要概念,它为处理和管理数据提供了基本框架。数据结构通常包括以下几个重要方面…...

QECon大会亮相产品,全栈测试平台推荐:RunnerGo

最近在gitee上看见一款获得GVP(最有价值开源项目)的测试平台RunnerGo,看他们官网介绍包含了接口测试、性能测试、自动化测试。知道他们有saas版可以试用,果断使用了一下,对其中场景管理和性能测试印象深刻,…...

前端小案例-图片存放在远端服务器

前端小案例-图片存放在远端服务器 项目背景: 一个智能产业园的小程序由于可以控制很多种设备,可能有灯、空调、窗帘等智能设备。 现在面临以下问题: 需要存放很多设备的图标。设备的图标可能会进行修改。 为了解决上面的问题&#xff0c…...

【鼠标右键菜单添加用VSCode打开文件或文件夹】

鼠标右键菜单添加用VSCode打开文件或文件夹 演示效果如下: 右击文件 或右击文件夹 或在文件夹内空白处右击 方法一:重装软件 重装软件,安装时勾选如图所示方框(如果登录的有账号保存有配置信息可以选择重装软件&#xff0c…...

【jvm--堆】

文章目录 1. 堆(Heap)的核心概述2. 图解对象分配过程2.1 Minor GC,MajorGC、Full GC2.1 堆空间分代思想2.3 内存分配策略2.4 TLAB(Thread Local Allocation Buffer)2.5 堆空间的参数设置2.6 逃逸分析2.7 逃逸分析&…...

【数据库——MySQL(实战项目1)】(1)图书借阅系统

目录 1. 简述2. 功能3. 数据库结构设计3.1 绘制 E-R 图3.2 创建数据库3.3 创建表3.4 插入表数据 1. 简述 经过前期的学习,我们已经掌握数据库基础操作,因此是时候来做一个实战项目了——图书借阅系统。对于图书借阅系统,相信大家不难想到至少…...

[GXYCTF 2019]Ping Ping Ping题目解析

本题考察的内容是rce绕过,本事过滤的东西不算多也算是比较好绕过 基础看到这种先ping一下试试看 输入127.0.0.1看看有啥东西 有回显说明可以接着往下做 借用RCE漏洞详解及绕过总结(全面)-CSDN博客这个大佬整理的rce绕过 ;A;B无论真假,A与B都执行&…...

HTTP协议的请求协议和响应协议的组成,HTTP常见的状态信息

HTTP协议 什么是协议 协议实际上是某些人或组织提前制定好的一套规范,大家只要都按照这个规范来就可以做到沟通无障碍 HTTP协议是W3C(万维网联盟组织)制定的一种超文本传输通信协议(发送消息的模板和数据的格式),除了传送字符串,还有声音、视频、图片等流媒体等超文本信息 …...

【LeetCode】剑指 Offer Ⅱ 第6章:栈(6道题) -- Java Version

题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 类型题目解决方案栈的应用剑指 Offer II 036. 后缀表达式模拟 栈 ⭐剑指 Offer II 037. 小行星碰撞分类讨论 栈 ⭐单调栈剑指 Offer II 038. 每日温度单调栈 ⭐剑指 Offer II 039. 直方图最大矩形面积单调栈…...

vue3的element-plus的el-dialog的样式修改无效问题

问题描述 想要修改element-plus的对话框el-dialog中的样式,发现在页面style的scoped属性下,使用:deep深入选择器进行修改是无效的。(vue2下深度选择器是有效的) //无效 :deep(.el-dialog){background-color: transparent; }解决…...

归纳所猜半结论推出完整结论:CF1592F1

https://www.luogu.com.cn/problem/CF1592F1 场上猜了个结论,感觉只会操作1。然后被样例1hack了。然后就猜如果 ( n , m ) (n,m) (n,m) 为1则翻转4操作,被#14hack了。然后就猜4操作只会进行一次,然后就不知道怎么做下去了。 上面猜的结论都…...

WPFdatagrid结合comboBox

在WPF的DataGrid中希望结合使用ComboBox下拉框,达到下拉选择绑定的效果,在实现的过程中,遇到了一些奇怪的问题,因此记录下来。 网上能够查询到的解决方案: 总共有三种ItemSource常见绑定实现方式: 1.ItemS…...

Markdown类图之继承、实现、关联、依赖、组合、聚合总结(十五)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

@MultipartConfig注解

前言: 在学习Javaweb的Servlet文件上传和下载的过程中,我们会遇到一个特殊的注解---MultipartConfig。 MultipartConfig的适用情况: 1.文件上传: 当您的应用程序需要接收用户上传的文件时,可以在相应的 Servlet 上使用 Multipart…...

Python并发编程简介

1、Python对并发编程的支持 多线程: threading, 利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成多进程: multiprocessing, 利用多核CPU的能力,真正的并行执行任务异步IO: asyncio,在单线程利用CPU和IO同时执行的原理,实现函数异步执行使用Lo…...

WebSocket介绍及部署

WebSocket是一种在单个TCP连接上进行全双工通信的协议,其设计的目的是在Web浏览器和Web服务器之间进行实时通信(实时Web)。 WebSocket协议的优点包括: 1. 更高效的网络利用率:与HTTP相比,WebSocket的握手…...

自动求导,计算图示意图及pytorch实现

pytorch实现 x1 torch.tensor(3.0, requires_gradTrue) y1 torch.tensor(2.0, requires_gradTrue) a x1 ** 2 b 3 * a c b * y1 c.backward() print(x1.grad) print(y1.grad) print(x1.grad 6 * x1 * y1) print(y1.grad 3 * (x1 ** 2))输出为: tensor(36.) …...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

pam_env.so模块配置解析

在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...