networkX-04-查找k短路
文章目录
- 1.构建图
- 2.使用networkX查找最短路径
- 3.自己构建方法
教程仓库地址:github networkx_tutorial
import networkx as nx
import matplotlib.pyplot as plt
1.构建图
# 创建有向图
G = nx.DiGraph()# 添加带权重的边
edges = [(0, 1, 1), (0, 2, 2), (1, 2, 1), (1, 3, 2), (2, 3, 1),(3, 4, 3), (2, 4, 4), (4, 5, 2), (3, 5, 5),
]
G.add_weighted_edges_from(edges)# 绘制图
pos = nx.spring_layout(G) # 使用Spring布局
nx.draw(G, pos, with_labels=True, node_size=2000, node_color="lightblue", font_size=10)
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): G[u][v]['weight'] for u, v in G.edges()}, font_color='red')# 显示图
plt.show()

2.使用networkX查找最短路径
from itertools import islice
def k_shortest_paths(G, source, target, k, weight=None):return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
# 获取 k-最短路径
paths = k_shortest_paths(G, 0, 5, 3, 'weight')# 输出路径和权重
for i, path in enumerate(paths):weight = sum(G[path[n]][path[n + 1]]['weight'] for n in range(len(path) - 1))print(f"Path {i + 1}: {path}, weight: {weight}")
Path 1: [0, 1, 3, 5], weight: 8
Path 2: [0, 2, 3, 5], weight: 8
Path 3: [0, 1, 2, 3, 5], weight: 8
3.自己构建方法
from itertools import count
from heapq import heappush, heappop
import networkx as nx
import pandas as pd
import matplotlib.pyplot as pltclass K_shortest_path(object):def __init__(self,G, k=3, weight='weight') -> None:self.G = G self.k = kself.weight = weightself.G_original = Gdef get_path_length(self,G,path:list, weight='weight'):"""计算每条路径的总阻抗,基于weightArgs:G (nx.graph): 构建的图path (list): 路径weight (str, optional): 边的权重计算基于什么,可以是时间也可以是距离. Defaults to 'weight'."""length = 0if len(path) > 1:for i in range(len(path) - 1):u = path[i]v = path[i + 1]length += G.edges[u,v].get(weight, 1)return length def find_sp(self,s,t,G):"""找到第一条P(1)Args:s (node): 路径起点t (node): 路径终点lenght:P(1)对应的长度path:P(1)对应的路径 list"""path_1 = nx.shortest_path(G=G,source=s,target=t,weight=self.weight)length_1 = nx.shortest_path_length(G=G,source=s,target=t,weight=self.weight)# length_1, path_1 = nx.single_source_dijkstra(G,source=s,weight=weight)return length_1, path_1def find_Pi_sp(self,source,target):if source == target:return ([0], [[source]]) G = self.Gk = self.klength, path = self.find_sp(G=G,s=source,t=target)lengths = []paths = []lengths.append(length)paths.append(path)c = count() B = [] G_original = self.G.copy() for i in range(1, k):for j in range(len(paths[-1]) - 1): spur_node = paths[-1][j]root_path = paths[-1][:j + 1]edges_removed = []for c_path in paths:if len(c_path) > j and root_path == c_path[:j + 1]:u = c_path[j] #节点v = c_path[j + 1] #节点if G.has_edge(u, v): #查看u,v节点之间是否有路径edge_attr = G.edges[u,v]['weight']G.remove_edge(u, v) #移除边edges_removed.append((u, v, edge_attr))for n in range(len(root_path) - 1):node = root_path[n]# out-edgesdict_d = []for (u,v,edge_attr) in G.edges(nbunch =node,data = True ):# for u, v, edge_attr in G.edges_iter(node, data=True):edge_attr = edge_attr['weight']dict_d.append((u,v))edges_removed.append((u, v, edge_attr))G.remove_edges_from(dict_d) if G.is_directed():# in-edgesin_edges_d_list = []for (u,v,edge_attr) in G.edges(nbunch =node,data = True ):# for u, v, edge_attr in G.in_edges_iter(node, data=True):# edge_attr = edge_attr['weight']edge_attr = G.edges[u,v]['weight']# G.remove_edge(u, v)in_edges_d_list.append((u,v))edges_removed.append((u, v, edge_attr))G.remove_edges_from(in_edges_d_list) spur_path_length, spur_path = nx.single_source_dijkstra(G, spur_node, weight=self.weight) if target in spur_path and spur_path[target]:total_path = root_path[:-1] + spur_path[target]total_path_length = self.get_path_length(G_original, root_path, self.weight) + spur_path_length[target] heappush(B, (total_path_length, next(c), total_path))for e in edges_removed:u, v, edge_attr = eG.add_edge(u, v, weight = edge_attr)if B:(l, _, p) = heappop(B) lengths.append(l)paths.append(p)else:breakreturn (lengths,paths)
if __name__ =='__main__':# 创建有向图G = nx.DiGraph()# 添加带权重的边edges = [(0, 1, 1), (0, 2, 2), (1, 2, 1), (1, 3, 2), (2, 3, 1),(3, 4, 3), (2, 4, 4), (4, 5, 2), (3, 5, 5), ]G.add_weighted_edges_from(edges)for u, v, weight in edges:G.add_edge(u, v, weight=weight)KSP = K_shortest_path(G=G,k=3,weight='weight')KSP.G# 绘制图pos = nx.spring_layout(KSP.G) # 使用Spring布局nx.draw(KSP.G, pos, with_labels=True, node_size=2000, node_color="lightblue", font_size=10)nx.draw_networkx_edge_labels(KSP.G, pos, edge_labels={(u, v): KSP.G[u][v]['weight'] for u, v in KSP.G.edges()}, font_color='red')# 显示图plt.show()# 最短路径查询source = 0target = 5(lengths,paths) = KSP.find_Pi_sp(source=source,target=target)k_df = pd.DataFrame((lengths,paths)).Tk_df.columns = ['weight','path']print(k_df)

weight path
0 8 [0, 1, 3, 5]
1 8 [0, 2, 3, 5]
2 8 [0, 1, 2, 3, 5]
相关文章:
networkX-04-查找k短路
文章目录 1.构建图2.使用networkX查找最短路径3.自己构建方法 教程仓库地址:github networkx_tutorial import networkx as nx import matplotlib.pyplot as plt1.构建图 # 创建有向图 G nx.DiGraph()# 添加带权重的边 edges [(0, 1, 1), (0, 2, 2), (1, 2, 1), …...
Linux虚拟机搭建RabbitMQ集群
普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每台机器启动一个。创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通…...
C之fopen/fclose/fread/fwrite/flseek
一、C中文件操作简介 c中的文件操作大致和linux的文件操作类似,但是毕竟是不同的API,所以会有些差异。部分差异会在下面的案例中体验 二、fopen open的参数有两个一个是文件名,一个是模式选择,不同open函数,open中的模…...
3D机器视觉:解锁未来的立体视野
原创 | 文 BFT机器人 机器视觉领域一直在不断演进,从最初的二维图像处理,逐渐扩展到了更复杂的三维领域,形成了3D机器视觉。3D机器视觉技术的涌现为计算机系统带来了全新的感知和理解能力,这一领域的发展正日益受到广泛关注。本文…...
大端字节序存储 | 小端字节序存储介绍
为什么存储的顺序有些变动呢? 大小端的介绍 我们在创建变量时,操作系统就会给你分配空间,比如你创建了【short/int/double/float】的变量,这些变量的类型都是大于1个字节的,操作系统会根据你这个变量的类型ÿ…...
ASP.Core3.1 WebAPI 发布到IIS
本篇文章简述如何在IIS中发布你的.Core 程序 1.打包 首先你要打包好你程序,如果你是Visual Studio开发的程序,那你右击你的项目点击发布 如果你是Visual Code 开发的,那你在你的终端切换到你的目录然后执行命令 dotnet publish --config…...
MyBatisPlus属性自动填充和乐观锁插件+查询删除操作+整合SpringBoot出现问题解决
属性字段自动填充 一、实体类和数据表添加两个字段(属性) 表:create_tiem/update_time 实体类:createTime/updateTime 二、实体类中属性进行注解添加 TableField(fillFieldFill.INSERT) private Date createTime;TableField(f…...
软件测试/测试开发丨App自动化—CSS 定位与原生定位
点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27684 一、原生定位 元素属性定位组合定位 # ID 定位 driver.find_element_by_android_uiautomator(\new UiSelector().resourceId("<element-I…...
c语言:通讯录管理系统(文件版本)
前言:在大多数高校内,都是通过设计一个通讯录管理系统来作为c语言课程设计,通过一个具体的系统设计将我们学习过的结构体和函数等知识糅合起来,可以很好的锻炼学生的编程思维,本文旨在为通讯录管理系统的设计提供思路和…...
Android Studio 配置Git SVN忽略文件
在使用Android Studio进行版本控制时,经常会遇到需要忽略某些文件的情况,比如临时文件、编译生成的文件等。这些文件虽然在项目中存在,但不希望被加入到版本控制中。 在Android Studio中设置忽略文件 在Android Studio中,我们可…...
独享IP地址的层级划分和管理:打造稳定高效的网络架构
在网络架构设计中,独享地址的层级划分和管理是一项关键任务。它不仅能提供更好的网络性能和安全性,还能帮助企业实现更高效的资源管理。本文将为您详细介绍独享地址的层级划分和管理的重要性,并提供具体的方案和实际操作建议。 第一部分&…...
js中async的作用
async是JavaScript中的关键字,用于表示函数是异步的。 当函数被标记为async时,该函数会自动返回一个Promise对象,这个Promise对象的状态可能为resolved或rejected,具体取决于函数内部的操作和返回值。 使用async关键字时&#x…...
什么是信创测试?信创测试工具有哪些?
信创全称是“信息技术应用创新”,旨在实现信息技术自主可控,规避外部技术制裁和风险,其涉及产业链包括硬件、基础软件、应用软件、云服务、数据安全等领域。 信创测试是指对信创工程项目中的产品、系统等进行测试和验证,以确保其…...
健康医疗类APP在高需求快速发展背景下,商业化如何快速破局增收?
随着人口老龄化、亚健康人群的增加,人们健康意识的觉醒,健康医疗成为的大众重点关注的领域。同时,伴随互联网技术的飞速发展,为医疗行业促生了大量创新产品和衍生品,在此背景下,我国移动医疗产品正从萌芽走…...
java开源商城免费搭建 VR全景商城 saas商城 b2b2c商城 o2o商城 积分商城 秒杀商城 拼团商城 分销商城 短视频商城
1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端框架…...
k8spod就绪检查失败
pod 一直未就绪 kube-system metrics-server-7764f6c67c-2kts9 0/1 Running 0 10m kubect describe 查看 就绪探针未通过 Normal Started 3m19s kubelet Started container metrics-server Warning Unhealthy 5s (x20 over 2m55s) kubelet Readiness probe failed: HTTP probe…...
【数据结构】链表详解
大家好,今天为大家分享一下第二个数据结构——单链表 先打个广告:这里是博主写道顺序表,大家也可以查看:顺序表详解 首先: 我们学完顺序表的时候,我们发现有以下问题: 中间/头部的插入删除&…...
STM32使用HAL库驱动DS18B20
1、STM32CubeMx配置IO口 因为DS18B20是单总线,数据接收发送都是这根线,所以单片机配置为开漏上拉输出。 2、定时器配置 因为DS18B20对时序要求比较严格,建议用定时器延时获得微秒延时函数。 总线为48M,分频48,获得1…...
echarts折线图设置背景颜色
initChartsBox() {this.option {tooltip: {trigger: "axis",axisPointer: {// 方法一type: "shadow", // 默认为直线,可选为:line | shadowshadowStyle: {color: "rgba(41, 95, 204, 0.2)",},},borderColor: "rgba(…...
spring boot+ vue+ mysql开发的一套厘米级高精度定位系统源码
UWB室内高精度定位系统源码,自主版权演示 UWB技术最核心的能力就是精准的定位与测距,当然它还具备通信功能。不过,目前主流通信技术已经相当成熟,无需UWB兼顾去做通信传输。而且,如果使用UWB通信功能,反而会…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...
