networkX-04-查找k短路
文章目录
- 1.构建图
- 2.使用networkX查找最短路径
- 3.自己构建方法
教程仓库地址:github networkx_tutorial
import networkx as nx
import matplotlib.pyplot as plt
1.构建图
# 创建有向图
G = nx.DiGraph()# 添加带权重的边
edges = [(0, 1, 1), (0, 2, 2), (1, 2, 1), (1, 3, 2), (2, 3, 1),(3, 4, 3), (2, 4, 4), (4, 5, 2), (3, 5, 5),
]
G.add_weighted_edges_from(edges)# 绘制图
pos = nx.spring_layout(G) # 使用Spring布局
nx.draw(G, pos, with_labels=True, node_size=2000, node_color="lightblue", font_size=10)
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): G[u][v]['weight'] for u, v in G.edges()}, font_color='red')# 显示图
plt.show()

2.使用networkX查找最短路径
from itertools import islice
def k_shortest_paths(G, source, target, k, weight=None):return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
# 获取 k-最短路径
paths = k_shortest_paths(G, 0, 5, 3, 'weight')# 输出路径和权重
for i, path in enumerate(paths):weight = sum(G[path[n]][path[n + 1]]['weight'] for n in range(len(path) - 1))print(f"Path {i + 1}: {path}, weight: {weight}")
Path 1: [0, 1, 3, 5], weight: 8
Path 2: [0, 2, 3, 5], weight: 8
Path 3: [0, 1, 2, 3, 5], weight: 8
3.自己构建方法
from itertools import count
from heapq import heappush, heappop
import networkx as nx
import pandas as pd
import matplotlib.pyplot as pltclass K_shortest_path(object):def __init__(self,G, k=3, weight='weight') -> None:self.G = G self.k = kself.weight = weightself.G_original = Gdef get_path_length(self,G,path:list, weight='weight'):"""计算每条路径的总阻抗,基于weightArgs:G (nx.graph): 构建的图path (list): 路径weight (str, optional): 边的权重计算基于什么,可以是时间也可以是距离. Defaults to 'weight'."""length = 0if len(path) > 1:for i in range(len(path) - 1):u = path[i]v = path[i + 1]length += G.edges[u,v].get(weight, 1)return length def find_sp(self,s,t,G):"""找到第一条P(1)Args:s (node): 路径起点t (node): 路径终点lenght:P(1)对应的长度path:P(1)对应的路径 list"""path_1 = nx.shortest_path(G=G,source=s,target=t,weight=self.weight)length_1 = nx.shortest_path_length(G=G,source=s,target=t,weight=self.weight)# length_1, path_1 = nx.single_source_dijkstra(G,source=s,weight=weight)return length_1, path_1def find_Pi_sp(self,source,target):if source == target:return ([0], [[source]]) G = self.Gk = self.klength, path = self.find_sp(G=G,s=source,t=target)lengths = []paths = []lengths.append(length)paths.append(path)c = count() B = [] G_original = self.G.copy() for i in range(1, k):for j in range(len(paths[-1]) - 1): spur_node = paths[-1][j]root_path = paths[-1][:j + 1]edges_removed = []for c_path in paths:if len(c_path) > j and root_path == c_path[:j + 1]:u = c_path[j] #节点v = c_path[j + 1] #节点if G.has_edge(u, v): #查看u,v节点之间是否有路径edge_attr = G.edges[u,v]['weight']G.remove_edge(u, v) #移除边edges_removed.append((u, v, edge_attr))for n in range(len(root_path) - 1):node = root_path[n]# out-edgesdict_d = []for (u,v,edge_attr) in G.edges(nbunch =node,data = True ):# for u, v, edge_attr in G.edges_iter(node, data=True):edge_attr = edge_attr['weight']dict_d.append((u,v))edges_removed.append((u, v, edge_attr))G.remove_edges_from(dict_d) if G.is_directed():# in-edgesin_edges_d_list = []for (u,v,edge_attr) in G.edges(nbunch =node,data = True ):# for u, v, edge_attr in G.in_edges_iter(node, data=True):# edge_attr = edge_attr['weight']edge_attr = G.edges[u,v]['weight']# G.remove_edge(u, v)in_edges_d_list.append((u,v))edges_removed.append((u, v, edge_attr))G.remove_edges_from(in_edges_d_list) spur_path_length, spur_path = nx.single_source_dijkstra(G, spur_node, weight=self.weight) if target in spur_path and spur_path[target]:total_path = root_path[:-1] + spur_path[target]total_path_length = self.get_path_length(G_original, root_path, self.weight) + spur_path_length[target] heappush(B, (total_path_length, next(c), total_path))for e in edges_removed:u, v, edge_attr = eG.add_edge(u, v, weight = edge_attr)if B:(l, _, p) = heappop(B) lengths.append(l)paths.append(p)else:breakreturn (lengths,paths)
if __name__ =='__main__':# 创建有向图G = nx.DiGraph()# 添加带权重的边edges = [(0, 1, 1), (0, 2, 2), (1, 2, 1), (1, 3, 2), (2, 3, 1),(3, 4, 3), (2, 4, 4), (4, 5, 2), (3, 5, 5), ]G.add_weighted_edges_from(edges)for u, v, weight in edges:G.add_edge(u, v, weight=weight)KSP = K_shortest_path(G=G,k=3,weight='weight')KSP.G# 绘制图pos = nx.spring_layout(KSP.G) # 使用Spring布局nx.draw(KSP.G, pos, with_labels=True, node_size=2000, node_color="lightblue", font_size=10)nx.draw_networkx_edge_labels(KSP.G, pos, edge_labels={(u, v): KSP.G[u][v]['weight'] for u, v in KSP.G.edges()}, font_color='red')# 显示图plt.show()# 最短路径查询source = 0target = 5(lengths,paths) = KSP.find_Pi_sp(source=source,target=target)k_df = pd.DataFrame((lengths,paths)).Tk_df.columns = ['weight','path']print(k_df)

weight path
0 8 [0, 1, 3, 5]
1 8 [0, 2, 3, 5]
2 8 [0, 1, 2, 3, 5]
相关文章:
networkX-04-查找k短路
文章目录 1.构建图2.使用networkX查找最短路径3.自己构建方法 教程仓库地址:github networkx_tutorial import networkx as nx import matplotlib.pyplot as plt1.构建图 # 创建有向图 G nx.DiGraph()# 添加带权重的边 edges [(0, 1, 1), (0, 2, 2), (1, 2, 1), …...
Linux虚拟机搭建RabbitMQ集群
普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每台机器启动一个。创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通…...
C之fopen/fclose/fread/fwrite/flseek
一、C中文件操作简介 c中的文件操作大致和linux的文件操作类似,但是毕竟是不同的API,所以会有些差异。部分差异会在下面的案例中体验 二、fopen open的参数有两个一个是文件名,一个是模式选择,不同open函数,open中的模…...
3D机器视觉:解锁未来的立体视野
原创 | 文 BFT机器人 机器视觉领域一直在不断演进,从最初的二维图像处理,逐渐扩展到了更复杂的三维领域,形成了3D机器视觉。3D机器视觉技术的涌现为计算机系统带来了全新的感知和理解能力,这一领域的发展正日益受到广泛关注。本文…...
大端字节序存储 | 小端字节序存储介绍
为什么存储的顺序有些变动呢? 大小端的介绍 我们在创建变量时,操作系统就会给你分配空间,比如你创建了【short/int/double/float】的变量,这些变量的类型都是大于1个字节的,操作系统会根据你这个变量的类型ÿ…...
ASP.Core3.1 WebAPI 发布到IIS
本篇文章简述如何在IIS中发布你的.Core 程序 1.打包 首先你要打包好你程序,如果你是Visual Studio开发的程序,那你右击你的项目点击发布 如果你是Visual Code 开发的,那你在你的终端切换到你的目录然后执行命令 dotnet publish --config…...
MyBatisPlus属性自动填充和乐观锁插件+查询删除操作+整合SpringBoot出现问题解决
属性字段自动填充 一、实体类和数据表添加两个字段(属性) 表:create_tiem/update_time 实体类:createTime/updateTime 二、实体类中属性进行注解添加 TableField(fillFieldFill.INSERT) private Date createTime;TableField(f…...
软件测试/测试开发丨App自动化—CSS 定位与原生定位
点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27684 一、原生定位 元素属性定位组合定位 # ID 定位 driver.find_element_by_android_uiautomator(\new UiSelector().resourceId("<element-I…...
c语言:通讯录管理系统(文件版本)
前言:在大多数高校内,都是通过设计一个通讯录管理系统来作为c语言课程设计,通过一个具体的系统设计将我们学习过的结构体和函数等知识糅合起来,可以很好的锻炼学生的编程思维,本文旨在为通讯录管理系统的设计提供思路和…...
Android Studio 配置Git SVN忽略文件
在使用Android Studio进行版本控制时,经常会遇到需要忽略某些文件的情况,比如临时文件、编译生成的文件等。这些文件虽然在项目中存在,但不希望被加入到版本控制中。 在Android Studio中设置忽略文件 在Android Studio中,我们可…...
独享IP地址的层级划分和管理:打造稳定高效的网络架构
在网络架构设计中,独享地址的层级划分和管理是一项关键任务。它不仅能提供更好的网络性能和安全性,还能帮助企业实现更高效的资源管理。本文将为您详细介绍独享地址的层级划分和管理的重要性,并提供具体的方案和实际操作建议。 第一部分&…...
js中async的作用
async是JavaScript中的关键字,用于表示函数是异步的。 当函数被标记为async时,该函数会自动返回一个Promise对象,这个Promise对象的状态可能为resolved或rejected,具体取决于函数内部的操作和返回值。 使用async关键字时&#x…...
什么是信创测试?信创测试工具有哪些?
信创全称是“信息技术应用创新”,旨在实现信息技术自主可控,规避外部技术制裁和风险,其涉及产业链包括硬件、基础软件、应用软件、云服务、数据安全等领域。 信创测试是指对信创工程项目中的产品、系统等进行测试和验证,以确保其…...
健康医疗类APP在高需求快速发展背景下,商业化如何快速破局增收?
随着人口老龄化、亚健康人群的增加,人们健康意识的觉醒,健康医疗成为的大众重点关注的领域。同时,伴随互联网技术的飞速发展,为医疗行业促生了大量创新产品和衍生品,在此背景下,我国移动医疗产品正从萌芽走…...
java开源商城免费搭建 VR全景商城 saas商城 b2b2c商城 o2o商城 积分商城 秒杀商城 拼团商城 分销商城 短视频商城
1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端框架…...
k8spod就绪检查失败
pod 一直未就绪 kube-system metrics-server-7764f6c67c-2kts9 0/1 Running 0 10m kubect describe 查看 就绪探针未通过 Normal Started 3m19s kubelet Started container metrics-server Warning Unhealthy 5s (x20 over 2m55s) kubelet Readiness probe failed: HTTP probe…...
【数据结构】链表详解
大家好,今天为大家分享一下第二个数据结构——单链表 先打个广告:这里是博主写道顺序表,大家也可以查看:顺序表详解 首先: 我们学完顺序表的时候,我们发现有以下问题: 中间/头部的插入删除&…...
STM32使用HAL库驱动DS18B20
1、STM32CubeMx配置IO口 因为DS18B20是单总线,数据接收发送都是这根线,所以单片机配置为开漏上拉输出。 2、定时器配置 因为DS18B20对时序要求比较严格,建议用定时器延时获得微秒延时函数。 总线为48M,分频48,获得1…...
echarts折线图设置背景颜色
initChartsBox() {this.option {tooltip: {trigger: "axis",axisPointer: {// 方法一type: "shadow", // 默认为直线,可选为:line | shadowshadowStyle: {color: "rgba(41, 95, 204, 0.2)",},},borderColor: "rgba(…...
spring boot+ vue+ mysql开发的一套厘米级高精度定位系统源码
UWB室内高精度定位系统源码,自主版权演示 UWB技术最核心的能力就是精准的定位与测距,当然它还具备通信功能。不过,目前主流通信技术已经相当成熟,无需UWB兼顾去做通信传输。而且,如果使用UWB通信功能,反而会…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
