当前位置: 首页 > news >正文

深度学习基础知识 学习率调度器的用法解析

深度学习基础知识 学习率调度器的用法解析

  • 1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR
  • 2、正儿八经的模型搭建流程以及学习率调度器的使用设置

1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR

在这里插入图片描述

实验代码:

import torch
import torch.nn as nndef lr_lambda(x):return x*2net=nn.Sequential(nn.Conv2d(3,16,3,1,1))optimizer=torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9)lr_scheduler=torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lr_lambda)for _ in range(10):optimizer.step()lr_scheduler.step()print(optimizer.param_groups[0]['lr'])

打印结果:
在这里插入图片描述
分析数据变化如下图所示:
在这里插入图片描述

2、正儿八经的模型搭建流程以及学习率调度器的使用设置

在这里插入图片描述
代码:

import torch
import torch.nn as nn
import numpy as npdef create_lr_scheduler(optimizer,num_step:int,epochs:int,warmup=True,warmup_epochs=1,warmup_factor=1e-3):assert num_step>0 and epochs>0if warmup is False:warmup_epochs=0def f(x):"""根据step数,返回一个学习率倍率因子,注意在训练开始之前,pytorch会提前调用一次create_lr_scheduler.step()方法"""if warmup is True and x <= (warmup_epochs * num_step):alpha=float(x) / (warmup_epochs * num_step)# warmup过程中,学习率因子(learning rate factor):warmup_factor -----> 1return warmup_factor * (1-alpha) + alphaelse:# warmup后,学习率因子(learning rate factor):warmup_factor -----> 0return (1-(x - warmup_epochs * num_step) / (epochs-warmup_epochs * num_step)) ** 0.9return torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=f)net=nn.Sequential(nn.Conv2d(3,16,1,1))
optimizer=torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9)lr_scheduler=create_lr_scheduler(optimizer=optimizer,num_step=5,epochs=20,warmup=True)image=(np.random.rand(1,3,64,64)).astype(np.float32)
image_tensor=torch.tensor(image.copy(),dtype=torch.float32)
print(image.dtype)for epoch in range(20):net.train()predict=net(image_tensor)optimizer.zero_grad()optimizer.step()lr_scheduler.step()print(optimizer.param_groups[0]['lr'])   # 打印学习率变化情况

在这里插入图片描述

相关文章:

深度学习基础知识 学习率调度器的用法解析

深度学习基础知识 学习率调度器的用法解析 1、自定义学习率调度器**&#xff1a;**torch.optim.lr_scheduler.LambdaLR2、正儿八经的模型搭建流程以及学习率调度器的使用设置 1、自定义学习率调度器**&#xff1a;**torch.optim.lr_scheduler.LambdaLR 实验代码&#xff1a; i…...

【JUC系列-12】深入理解PriorityQueue的底层原理和基本使用

JUC系列整体栏目 内容链接地址【一】深入理解JMM内存模型的底层实现原理https://zhenghuisheng.blog.csdn.net/article/details/132400429【二】深入理解CAS底层原理和基本使用https://blog.csdn.net/zhenghuishengq/article/details/132478786【三】熟练掌握Atomic原子系列基本…...

Paddle安装

Paddle安装参考 docs/tutorials/INSTALL_cn.md PaddlePaddle/PaddleDetection - Gitee.comhttps://gitee.com/paddlepaddle/PaddleDetection/blob/release/2.6/docs/tutorials/INSTALL_cn.md # 不指定版本安装paddle-gpu python -m pip install paddlepaddle-gpu# 测试安装 …...

配置XP虚拟机和Win 10宿主机互相ping通

文章目录 一、关闭虚机和宿主机的防火墙1、关闭虚拟机的防火墙1.1方式一1.2方式二 2、关闭宿主机的防火墙 二、设置XP和宿主机VMnet8的IP地址、网关和DNS1、获取VMWare的虚拟网络配置信息2、设置XP的VMnet8的IP地址、网关和DNS3、设置宿主机VMnet8的IP地址、网关和DNS 三、获取…...

【机器学习】sklearn对数据预处理

文章目录 数据处理步骤观察数据数据无量纲化缺失值处理处理分类型特征处理连续型特征 数据处理步骤 数据无量纲化缺失值处理处理分类型特征&#xff1a;编码与哑变量处理连续型特征&#xff1a;二值化与分段 观察数据 通过pandas读取数据&#xff0c;通过head和info方法大致查…...

【智慧燃气】智慧燃气解决方案总体概述--终端层、网络层

关键词&#xff1a;智慧燃气、智慧燃气系统、智慧燃气平台、智慧燃气解决方案、智慧燃气应用、智能燃气 智慧燃气解决方案是基于物联网、大数据、云计算、移动互联网等先进技术&#xff0c;结合燃气行业特征&#xff0c;通过智能设备全面感知企业生产、环境、状态等信息的全方…...

Tomcat隔离web原理和热加载热部署

Tomcat 如何打破双亲委派机制 Tomcat 的自定义类加载器 WebAppClassLoader 打破了双亲委派机制&#xff0c;它首先自己尝试去加载某个类&#xff0c;如果找不到再代理给父类加载器&#xff0c;其目的是优先加载 Web 应用自己定义的类。具体实现就是重写 ClassLoader 的两个方法…...

使用ffmpeg和python脚本下载网络视频m3u8(全网最全面)

网上给娃找了些好看的电影和一些有趣的短视频&#xff0c;如何保存下来呢&#xff1f;从网上找各种工具&#xff1f;都不方便。于是想到何不编程搞定&#xff0c;搞个脚本。对程序员来说这都不是事儿。且我有华为云服务器&#xff0c;完全可以把地址记下&#xff0c;后台自动下…...

【考研408常用数据结构】C/C++实现代码汇总

文章目录 前言数组多维数组的原理、作用稀疏数组 链表单向链表的增删改查的具体实现思路约瑟夫环问题&#xff08;可不学&#xff09;双向链表 树二叉搜索树中序线索二叉树哈夫曼树的编码与译码红黑树B树B树 堆顺序与链式结构队列实现优先队列排序算法&#xff08;重点&#xf…...

Flink学习笔记(二):Flink内存模型

文章目录 1、配置总内存2、JobManager 内存模型3、TaskManager 内存模型4、WebUI 展示内存5、Flink On YARN 模式下内存分配6、Flink On Yarn 集群消耗资源估算6.1、资源分配6.2、Flink 提交 Yarn 集群的相关命令6.3、Flink On Yarn 集群的资源计算公式 1、配置总内存 Flink J…...

信息系统项目管理师第四版学习笔记——项目绩效域

干系人绩效域 干系人绩效域涉及与干系人相关的活动和职能。在项目整个生命周期过程中&#xff0c;有效执行本绩效域可以实现的预期目标主要包含&#xff1a;①与干系人建立高效的工作关系&#xff1b;②干系人认同项目目标&#xff1b;③支持项目的干系人提高了满意度&#xf…...

PyTorch 深度学习之加载数据集Dataset and DataLoader(七)

1. Revision: Manual data feed 全部Batch&#xff1a;计算速度&#xff0c;性能有问题 1 个 &#xff1a;跨越鞍点 mini-Batch:均衡速度与性能 2. Terminology: Epoch, Batch-Size, Iteration DataLoader: batch_size2, sheffleTrue 3. How to define your Dataset 两种处…...

小谈设计模式(26)—中介者模式

小谈设计模式&#xff08;26&#xff09;—中介者模式 专栏介绍专栏地址专栏介绍 中介者模式分析角色分析抽象中介者&#xff08;Mediator&#xff09;具体中介者&#xff08;ConcreteMediator&#xff09;抽象同事类&#xff08;Colleague&#xff09;具体同事类&#xff08;C…...

7种设计模式

1. 工厂模式 优点&#xff1a;封装了对象的创建过程&#xff0c;降低了耦合性&#xff0c;提供了灵活性和可扩展性。 缺点&#xff1a;增加了代码的复杂性&#xff0c;需要创建工厂类。 适用场景&#xff1a;当需要根据不同条件创建不同对象时&#xff0c;或者需要隐藏对象创建…...

el-table合计行合并

效果如下 因为合计el-table的合并方法是不生效的,所以需要修改css下手 watch: {// 应急物资的合计合并planData: {immediate: true,handler() {setTimeout(() > {const tds document.querySelectorAll(".pro_table .el-table__footer-wrapper tr>td");tds[0]…...

新手如何快速上手HTTP爬虫IP?

对于刚接触HTTP爬虫IP的新手来说&#xff0c;可能会感到有些困惑。但是&#xff0c;实际上HTTP爬虫IP并不复杂&#xff0c;只要掌握了基本的操作步骤&#xff0c;就可以轻松使用。本文将为新手们提供一个快速上手HTTP爬虫IP的入门指南&#xff0c;帮助您迅速了解HTTP爬虫IP的基…...

(十五)VBA常用基础知识:正则表达式的使用

vba正则表达式的说明 项目说明Pattern在这里写正则表达式&#xff0c;例&#xff1a;[\d]{2,4}IgnoreCase大小写区分&#xff0c;默认false&#xff1a;区分&#xff1b;true&#xff1a;不区分Globaltrue&#xff1a;全体检索&#xff1b;false&#xff1a;最小匹配Test类似p…...

vue配置@路径

第一步&#xff1a;安装path&#xff0c;如果node_module文件夹中有path就不用安装了 安装命令&#xff1a;npm install path --save 第二步&#xff1a;在vue.config.js文件&#xff08;如果没有就新建&#xff09;中配置 const path require("path"); function …...

Ubuntu 18.04 OpenCV3.4.5 + OpenCV3.4.5 Contrib 编译

目录 1 依赖安装 2 下载opencv3.4.5及opencv3.4.5 contrib版本 3 编译opencv3.4.5 opencv3.4.5_contrib及遇到的问题 1 依赖安装 首先安装编译工具CMake&#xff0c;命令安装即可&#xff1a; sudo apt install cmake 安装Eigen&#xff1a; sudo apt-get install libeigen3-…...

【网络基础】IP 子网划分(VLSM)

目录 一、 为什么要划分子网 二、如何划分子网 1、划分两个子网 2、划分多个子网 一、 为什么要划分子网 假设有一个B类IP地址172.16.0.0&#xff0c;B类IP的默认子网掩码是 255.255.0.0&#xff0c;那么该网段内IP的变化范围为 172.16.0.0 ~ 172.16.255.255&#xff0c;即…...

【OCR】合同上批量贴印章

一、需求 OCR算法在处理合同等文件时&#xff0c;会由于印章等遮挡导致文本误识别。因此在OCR预处理时&#xff0c;有一个很重要的步骤是“去除印章”。其中本文主要聚焦在“去除印章”任务中的数据构建步骤&#xff1a;“合同伪印章”的数据构建。下面直接放几张批量合成后效果…...

Stable diffusion 用DeOldify给黑白照片、视频上色

老照片常常因为当时的技术限制而只有黑白版本。然而现代的 AI 技术,如 DeOldify,可以让这些照片重现色彩。 本教程将详细介绍如何使用 DeOldify 来给老照片上色。. 之前介绍过基于虚拟环境的 基于DeOldify的给黑白照片、视频上色,本次介绍对于新手比较友好的在Stable diff…...

在服务器上解压.7z文件

1. 更新apt sudo apt-get update2. 安装p7zip sudo apt-get install p7zip-full3. 解压.7z文件 7za x WN18RR.7z...

【opencv】windows10下opencv4.8.0-cuda C++版本源码编译教程

【opencv】windows10下opencv4.8.0-cuda C版本源码编译教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【opencv】windows10下opencv4.8.0-cuda C版本源码编译教程前言准备工具cuda/cudnncmakeopencv4.8.0opencv_contrib CMake编译VS2019编…...

软碟通制作启动盘

一、下载并安装软碟通 二、插入U盘&#xff0c;打开软碟通&#xff1b; 三、在软碟通中选择“文件”-“打开镜像文件”&#xff0c;选择要制作成启动盘的ISO镜像文件&#xff1b; 1.打开要制作的iso文件 选择对应的iso文件 四、在软碟通中选择“启动”-“写入硬盘”&#xff…...

Tomcat和HPPT协议

1.介绍 1.Java EE 规范 JavaEE&#xff08;java Enterprise Edition&#xff09;&#xff1a;java企业版 JavaEE 规范是很多的java开发技术的总称。这些技术规范都是沿用自J2EE的。一共包括了13个技术规范 2.WEB概述 WEB在计算机领域中代表的是网络 像我们之前所用的WWW&…...

Acwing.4736步行者(模拟)

题目 约翰参加了一场步行比赛。 比赛为期 N 天&#xff0c;参赛者共 M 人&#xff08;包括约翰&#xff09;。 参赛者编号为 1∼M&#xff0c;其中约翰的编号为 P。 每个参赛者的每日步数都将被赛事方记录并公布。 每日步数最多的参赛者是当日的日冠军&#xff08;可以有并…...

前端预览、下载二进制文件流(png、pdf)

前端请求设置 responseType: “blob” 后台接口返回的文件流如下&#xff1a; 拿到后端返回的文件流后&#xff1a; 预览 <iframe :src"previewUrl" frameborder"0" style"width: 500px; height: 500px;"></iframe>1、预览 v…...

搞定ESD(三):ESD干扰耦合路径深入分析(一)

文章目录 一、外部测试环境引发的电场耦合1.1 静电枪枪体的电场耦合1.2 垂直耦合板与水平耦合板的电场耦合二、静电电流泄放路径中的电场耦合2.1 金属平面与敏感信号之间的电场耦合2.2 参考平面与敏感信号布线之间的电场耦合2.3 芯片散热片电场耦合分析2.3.1 散热片静电耦合机理…...

广州华锐互动:炼钢工厂VR仿真实训系统

随着科技的发展&#xff0c;我们的教育体系和职业培训方法也在迅速变化。其中&#xff0c;虚拟现实&#xff08;VR&#xff09;技术的出现为我们提供了一种全新的学习和培训方式。特别是在需要高度专业技能和安全性的领域&#xff0c;如钢铁冶炼。本文将探讨如何使用VR进行钢铁…...