当前位置: 首页 > news >正文

【图像去噪的扩散滤波】图像线性扩散滤波、边缘增强线性和非线性各向异性滤波(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 non_aniso

2.2 inhomo_iso

2.3 heat_imp

2.4 heat_explicit

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【图像去噪的扩散滤波】图像线性扩散滤波、边缘增强线性和非线性各向异性滤波

各种基于扩散的图像滤波方法:
1.使用热方程的线性扩散滤波 - 使用隐式和显式欧拉方法求解。
2. 边缘增强线性各向异性扩散滤波。
3. 边缘增强非线性各向异性扩散滤波。

在图像处理领域,去除图像中的噪点和提升细节是非常重要的任务。为此,发展了各种基于扩散的图像滤波方法,旨在改善图像质量和增强图像特征。以下是其中几种常见的滤波方法:

1. 线性扩散滤波:使用热方程模型来进行线性扩散滤波。这种方法可以使用隐式和显式欧拉方法来求解,以改善图像的平滑度和减少噪声。线性扩散滤波能够通过自适应地调整邻域像素的亮度值,实现图像的去噪和平滑。

2. 边缘增强线性各向异性扩散滤波:这种方法结合了线性扩散滤波和各向异性过滤的思想,在保持图像平滑的同时突出了图像中的边缘特征。通过对邻域像素的梯度进行加权处理,边缘增强线性各向异性扩散滤波能够有效地提升图像的边缘细节,使图像更加清晰和锐利。

3. 边缘增强非线性各向异性扩散滤波:与线性滤波相比,非线性滤波方法在处理图像时更加灵活和精确。边缘增强非线性各向异性扩散滤波通过考虑像素之间的非线性关系,使得处理后的图像在细节和边缘保留方面更具优势。这种方法能够在去除噪点的同时保持图像的细节和纹理信息。

这些基于扩散的图像滤波方法为图像去噪和增强提供了强大的工具。根据不同的应用需求和图像特征,选择合适的滤波方法能够显著改善图像质量,并提高图像的可视化效果。无论是在科学研究、医学影像还是图形设计领域,这些滤波方法都发挥着重要作用,为用户带来更好的图像处理体验。

📚2 运行结果

2.1 non_aniso

2.2 inhomo_iso

2.3 heat_imp

2.4 heat_explicit

部分代码:

% set up finite difference parameters
alpha =.5;
k = 1;
h = 1;lambda = (alpha^2)*(k/(h^2));[m n] = size(w);
%stick image into a vector
w_vec = reshape(w,n*n,1);
w_old = w;
w_new = w;%smooth the image
im_smth = filter_function(w,1);
im_smth = im_smth';
% required for g() calculation
[dx_im_smth dy_im_smth] = gradient(im_smth);
gr_im_smth = dx_im_smth.^2 + dy_im_smth.^2;[mmm nnn] = size(gr_im_smth);
% g() calculation
for i=1:mmmfor j=1:nnng(i,j) = 1/(1+(gr_im_smth(i,j)/32));end
end
%g = g';
jj=1;[im_sx im_sy]  = gradient(im_smth);
% diffusion tensor D is preconputed here
D = zeros(n*n,2,2);
for i=1:n*nrow = ceil(i/n);col = i - (row-1) * n;%  if((col > 1) && (col < n) && (row > 1) && (row < n))% choose eigenvector parallel and perpendicular to gradienteigen_vec = [im_sx(row,col) im_sy(row,col); im_sy(row,col) -im_sx(row,col) ];%choose eigenvalueseigen_vec(:,1) = eigen_vec(:,1) ./ norm(eigen_vec(:,1));eigen_vec(:,2) = eigen_vec(:,2) ./ norm(eigen_vec(:,2));eigen_val = [g(row,col) 0;0 1];% form diffusion tensorD(i,:,:) = eigen_vec * eigen_val * (eigen_vec');        % end
endfigure;
for k=1:400 % for each iterationfor i=1:n*n % solve using Jacobi iterations schemerow = ceil(i/n); %compute what row this pixel belongs to in original imagecol = i - (row-1) * n; % compute cols similarly%different if conditions handles pixels at different location in%the image as depending on their location they may or may not have%all their neighbor pixels which will be required for finite%differencesif((col > 1) && (col < n) && (row > 1) && (row < n))s = -lambda * ((D(i,1,1) * w_old(i-1)) + ((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...(D(i,2,2) * w_old(i-n)) + ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))) + ((D(i,1,2) + D(i,2,1)) * w_old(i+n+1)));w_new(i) = (-s + w_old(i))/(1 + lambda * (2 * D(i,1,1) + 2 * D(i,2,2) - D(i,1,2) - D(i,2,1)));elseif((row == 1) && (col > 1) && (col < n))s = -lambda * ((D(i,1,1) * w_old(i-1)) + ((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))) + ((D(i,1,2) + D(i,2,1)) * w_old(i+n+1)));%s = -(lambda) * (w_old(i+1) + w_old(i-1) + w_old(i+n));w_new(i) = (-s + w_old(i))/(1+4*lambda);elseif((row == n) && (col > 1) && (col < n))s = -lambda * ((D(i,1,1) * w_old(i-1)) + ((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...(D(i,2,2) * w_old(i-n)));%s = -(lambda) * (w_old(i+1) + w_old(i-1) + w_old(i-n));w_new(i) = (-s + w_old(i))/(1+4*lambda);elseif((col == 1) && (row > 1) && (row < n))s = -lambda * (((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...(D(i,2,2) * w_old(i-n)) + ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))) + ((D(i,1,2) + D(i,2,1)) * w_old(i+n+1)));%s = -(lambda) * (w_old(i+1) + w_old(i+n) + w_old(i-n));w_new(i) = (-s + w_old(i))/(1+4*lambda);elseif((col == n) && (row > 1) && (row < n))s = -lambda * ((D(i,1,1) * w_old(i-1)) +  ...(D(i,2,2) * w_old(i-n)) + ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))));            %s = -(lambda) * (w_old(i-1) + w_old(i+n) + w_old(i-n));w_new(i) = (-s + w_old(i))/(1+4*lambda);elseif((col==1) && (row==1))

% set up finite difference parameters
alpha =.5;
k = 1;
h = 1;

lambda = (alpha^2)*(k/(h^2));

[m n] = size(w);
%stick image into a vector
w_vec = reshape(w,n*n,1);
w_old = w;
w_new = w;

%smooth the image
im_smth = filter_function(w,1);
im_smth = im_smth';
% required for g() calculation
[dx_im_smth dy_im_smth] = gradient(im_smth);
gr_im_smth = dx_im_smth.^2 + dy_im_smth.^2;

[mmm nnn] = size(gr_im_smth);
% g() calculation
for i=1:mmm
    for j=1:nnn
        g(i,j) = 1/(1+(gr_im_smth(i,j)/32));
    end
end
%g = g';
jj=1;

[im_sx im_sy]  = gradient(im_smth);
% diffusion tensor D is preconputed here
D = zeros(n*n,2,2);
for i=1:n*n
    row = ceil(i/n);
    col = i - (row-1) * n;
  %  if((col > 1) && (col < n) && (row > 1) && (row < n))
        
        % choose eigenvector parallel and perpendicular to gradient
        eigen_vec = [im_sx(row,col) im_sy(row,col); im_sy(row,col) -im_sx(row,col) ];
        %choose eigenvalues
        eigen_vec(:,1) = eigen_vec(:,1) ./ norm(eigen_vec(:,1));
        eigen_vec(:,2) = eigen_vec(:,2) ./ norm(eigen_vec(:,2));
        eigen_val = [g(row,col) 0;0 1];
        
        % form diffusion tensor
        D(i,:,:) = eigen_vec * eigen_val * (eigen_vec');        
        % end
end

figure;
for k=1:400 % for each iteration
    for i=1:n*n % solve using Jacobi iterations scheme
        row = ceil(i/n); %compute what row this pixel belongs to in original image
        col = i - (row-1) * n; % compute cols similarly

        %different if conditions handles pixels at different location in
        %the image as depending on their location they may or may not have
        %all their neighbor pixels which will be required for finite
        %differences
        
        if((col > 1) && (col < n) && (row > 1) && (row < n))
            
            s = -lambda * ((D(i,1,1) * w_old(i-1)) + ((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...
                (D(i,2,2) * w_old(i-n)) + ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))) + ((D(i,1,2) + D(i,2,1)) * w_old(i+n+1)));
            w_new(i) = (-s + w_old(i))/(1 + lambda * (2 * D(i,1,1) + 2 * D(i,2,2) - D(i,1,2) - D(i,2,1)));
            
        elseif((row == 1) && (col > 1) && (col < n))
            s = -lambda * ((D(i,1,1) * w_old(i-1)) + ((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...
                ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))) + ((D(i,1,2) + D(i,2,1)) * w_old(i+n+1)));
            
            %s = -(lambda) * (w_old(i+1) + w_old(i-1) + w_old(i+n));
            w_new(i) = (-s + w_old(i))/(1+4*lambda);
        elseif((row == n) && (col > 1) && (col < n))
            s = -lambda * ((D(i,1,1) * w_old(i-1)) + ((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...
                (D(i,2,2) * w_old(i-n)));
            
            %s = -(lambda) * (w_old(i+1) + w_old(i-1) + w_old(i-n));
            w_new(i) = (-s + w_old(i))/(1+4*lambda);
        elseif((col == 1) && (row > 1) && (row < n))
            s = -lambda * (((D(i,1,1) - D(i,1,2) - D(i,2,1)) * (w_old(i+1))) +  ...
                (D(i,2,2) * w_old(i-n)) + ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))) + ((D(i,1,2) + D(i,2,1)) * w_old(i+n+1)));
            
            %s = -(lambda) * (w_old(i+1) + w_old(i+n) + w_old(i-n));
            w_new(i) = (-s + w_old(i))/(1+4*lambda);
        elseif((col == n) && (row > 1) && (row < n))
            s = -lambda * ((D(i,1,1) * w_old(i-1)) +  ...
                (D(i,2,2) * w_old(i-n)) + ((D(i,2,2) - D(i,1,2) - D(i,2,1)) * (w_old(i+n))));            
            %s = -(lambda) * (w_old(i-1) + w_old(i+n) + w_old(i-n));
            w_new(i) = (-s + w_old(i))/(1+4*lambda);
        elseif((col==1) && (row==1))

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张建伟,王译禾,陈允杰.基于非线性扩散滤波结构信息的图像去噪方法[J].计算机工程与设计, 2016, 37(11):8.DOI:10.16208/j.issn1000-7024.2016.11.021.

[2]文武,苗放.复数域非线性扩散滤波在图像处理中的应用[J].微电子学与计算机, 2012.DOI:CNKI:SUN:WXYJ.0.2012-06-015.

[3]傅艳莉,李超,陈浩,等.各向异性扩散滤波远探测声波测井图像降噪方法[J].应用声学, 2022, 41(4):10.

[4]许韬.非线性扩散图像混合滤波去噪方法研究[J].计算机仿真, 2020, 037(012):460-464.

[5]李志伟,冯象初.维纳滤波和非线性扩散相结合的图像去噪[J].电子科技, 2007(9):4.DOI:10.3969/j.issn.1007-7820.2007.09.016.

🌈4 Matlab代码实现

相关文章:

【图像去噪的扩散滤波】图像线性扩散滤波、边缘增强线性和非线性各向异性滤波(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

4、在docker容器内的tomcat 中发布项目

1、查看本地是否有tomcat镜像&#xff0c;如果不存在则去下载 docker images 2、查看本地是否有tomcat容器&#xff0c;如存在跳过第3步 docker ps 3、创建tomcat容器 此容器用于复制tomcat的配置文件&#xff0c;配置文件复制后需删除此容器&#xff0c;如果已经存在跳过此步…...

数学建模——人工神经网络模型

一、人工神经网络简介 1、神经网络起源与应用 1943年心理学家McCulloch和数学家Pitts提出神经元生物数学模型&#xff08;M-P模型&#xff09;&#xff0c;后来人工神经网络(Artifical Neural Network,ANN)是在生物神经网络(Biological Neural Network,BNN)基础上发展起来的&a…...

java合成多个pdf为一个pdf

pom文件 <dependency><groupId>com.lowagie</groupId><artifactId>itext</artifactId><version>2.1.7</version></dependency>主文件 import com.lowagie.text.Document; import com.lowagie.text.pdf.PdfCopy; import com.lo…...

“高级Vue状态管理 - Vuex的魅力与应用“

目录 引言1. Vuex的简介1.1 什么是Vuex&#xff1f;1.2 Vuex的核心概念 2. Vuex的值获取与改变(综合案例)3. Vuex的异步请求总结 引言 在现代Web开发中&#xff0c;前端应用变得越来越复杂。随着应用规模的扩大和数据流的复杂性增加&#xff0c;有效地管理应用的状态成为了一项…...

Vue整合

基础配置&#xff1a; 1.创建&#xff1a;cmd 中 输入 create vue vue_name 启动命令&#xff1a;npm run serve 2.当node_modules(依赖)丢失时通过 npm install 下载 【根据&#xff1a;package-lock.json下载】 3.下载路由 npm i vue-router3.5.2 -S main.js导入 // np…...

探秘PMP和六西格玛的不同:哪一个能为你的职业生涯加分?

今天&#xff0c;我们将带你深入了解一项相对冷门但价值不菲的证书——六西格玛黑带。 可能你曾听说过PMP&#xff0c;但相比之下&#xff0c;六西格玛黑带的资源分享似乎较少&#xff0c;考试内容却更为广泛深入。这里&#xff0c;让我为你详细解析这一考试&#xff0c;带你进…...

大数据学习(3)-hive分区表与分桶表

&&大数据学习&& &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 承认自己的无知&#xff0c;乃是开启智慧的大门 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一下博>主哦&#x…...

JS 原生实现触底加载

创建一个容器来存储列表项。 监听滚动事件&#xff0c;当滚动接近底部时触发加载更多操作。 加载更多数据后&#xff0c;将新数据附加到容器中。 以下是一个简单的示例&#xff1a; <!DOCTYPE html> <html><head><style>#scroll-container {heigh…...

结构体,位段!

目录 1.什么是位段&#xff1f; 别急&#xff01;在下面第二点我和大家介绍。 2.位段的内存怎么分配&#xff1f; 还有一种情况就是两种类型夹杂在一起的位段 3.位段的跨平台问题 4.位段能干嘛&#xff1f;&#xff08;应用&#xff09; 5.位段的注意事项 1.什么是位段&…...

当10年程序员是什么体验?存款几位数?

最近网上一个话题吸引了许多人的讨论&#xff0c;当10年程序员&#xff0c;是一种什么体验&#xff1f; 都说程序员的高收入和工作年限应该成正比&#xff0c;真的是这样吗&#xff1f;工作10年的程序员&#xff0c;工资应该是什么水平&#xff1f;不少网友纷纷“现身说法”..…...

ExoPlayer架构详解与源码分析(4)——整体架构

系列文章目录 ExoPlayer架构详解与源码分析&#xff08;1&#xff09;——前言 ExoPlayer架构详解与源码分析&#xff08;2&#xff09;——Player ExoPlayer架构详解与源码分析&#xff08;3&#xff09;——Timeline ExoPlayer架构详解与源码分析&#xff08;4&#xff09;—…...

rust文件读写

std::fs模块提供了结构体File&#xff0c;它表示一个文件。 一、打开文件 结构体File提供了open()函数 open()以只读模式打开文件&#xff0c;如果文件不存在&#xff0c;则会抛出一个错误。如果文件不可读&#xff0c;那么也会抛出一个错误。 范例 fn main() {let file s…...

腾讯云我的世界mc服务器配置选择和价格表

开Minecraft我的世界服务器配置怎么选择&#xff1f;10人以内玩2核4G就够用了&#xff0c;开我的世界服务器选择轻量应用服务器就够了&#xff0c;腾讯云轻量应用服务器2核2G3M带宽轻量服务器一年95元&#xff0c;活动&#xff1a;txyfwq.com/go/tencent 轻量CPU采用至强白金处…...

基于安卓android微信小程序的旅游系统

项目介绍 随着人民生活水平的提高,旅游业已经越来越大众化,而旅游业的核心是信息,不论是对旅游管理部门、对旅游企业,或是对旅游者而言,有效的获取旅游信息,都显得特别重要.自助定制游将使旅游相关信息管理工作规范化、信息化、程序化,提供旅游景点、旅游线路,旅游新闻等服务本…...

文本编辑器去除PDF水印

用文本编辑器打开pdf&#xff0c;搜索水印的特殊文字&#xff0c;全部替换。 另外一个水印字母间有空格。 替换完后保存。 重新打开pdf&#xff1a;...

kubernetes负载感知调度

背景 kubernetes 的原生调度器只能通过资源请求来调度 pod&#xff0c;这很容易造成一系列负载不均的问题&#xff0c; 并且很多情况下业务方都是超额申请资源&#xff0c;因此在原生调度器时代我们针对业务的特性以及评估等级来设置 Requests/Limit 比例来提升资源利用效率。…...

Lock使用及效率分析(C#)

针对无Lock、Lock、ReadWriterLock、ReadWriterLockSlim四种方式&#xff0c;测试在连续写的情况下&#xff0c;读取的效率&#xff08;原子操作Interlocked由于使用针对int,double等修改的地方特别多&#xff0c;而且使用范围受限&#xff0c;所以本文章没有测试&#xff09; …...

安卓三防平板在行业应用中有哪些优势

在工业维修和检测中&#xff0c;安卓三防平板的应用也十分广泛。它可以搭载各种专业软件和工具&#xff0c;帮助工人们进行设备故障排查和维护&#xff0c;降低了维修成本和停机时间。 一、产品卖点&#xff1a; 1. 防水性能&#xff1a;该手持平板采用了防水设计&#xff0c;…...

2015架构真题(五十)

供应链中信息流覆盖了供应商、制造商和分销商&#xff0c;信息流分为需求信息流和供应信息流&#xff0c;&#xff08;&#xff09;属于需求信息流&#xff0c;&#xff08;&#xff09;属于供应信息流。 库存记录生产计划商品入库单提货发运单 客户订单采购合同完工报告单销售…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...