当前位置: 首页 > news >正文

竞赛选题 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 车位识别车道线检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式
整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述

import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_polypoints = []
prev_points = []
patches = []
total_points = []
breaker = Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas = ax.figure.canvasself.poly = PolygonSelector(ax, self.onselect)self.ind = []def onselect(self, verts):global pointspoints = vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key == 'b':globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print("data saved in "+ savePath + " file") with open(savePath, 'wb') as f:pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key == 'n': pts = np.array(points, dtype=np.int32) if points != prev_points and len(set(points)) == 4:print("Points : "+str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points = pointsif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('video_path', help="Path of video file")parser.add_argument('--out_file', help="Name of the output file", default="regions.p")args = parser.parse_args()global globSelectglobal savePathsavePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"print("\n> Select a region in the figure by enclosing them within a quadrilateral.")print("> Press the 'f' key to go full screen.")print("> Press the 'esc' key to discard current quadrilateral.")print("> Try holding the 'shift' key to move all of the vertices.")print("> Try holding the 'ctrl' key to move a single vertex.")print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")print("> When you are done press 'b' to Exit the program\n")video_capture = cv2.VideoCapture(args.video_path)cnt=0rgb_image = Nonewhile video_capture.isOpened():success, frame = video_capture.read()if not success:breakif cnt == 5:rgb_image = frame[:, :, ::-1]cnt += 1video_capture.release()while True:fig, ax = plt.subplots()image = rgb_imageax.imshow(image)p = PatchCollection(patches, alpha=0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect = SelectFromCollection(ax)bbox = plt.connect('key_press_event', onkeypress)break_event = plt.connect('key_press_event', break_loop)plt.show()globSelect.disconnect()
车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛选题 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) …...

axios调用springboot项目接口获取数据简述版

简述版 前端 <div idZjw> <table> <tr v-for"item in all"><td>{{item.cno}}</td><td>{{item.name}}</td><td>{{item.age}}</td><td><img :src"item.picUrl" style"height: 130px;…...

MPP 架构在 OLAP 数据库的运用

MPP 架构&#xff1a; MPP 架构的产品&#xff1a; Impala ClickHouse Druid Doris 很多 OLAP 引擎都采用了 MPP 架构 批处理系统 - 使用场景分钟级、小时级以上的任务&#xff0c;目前很多大型互联网公司都大规模运行这样的系统&#xff0c;稳定可靠&#xff0c;低成本。…...

什么影响香港服务器的速度原因

1、服务器缓存&#xff1a;清理缓存即可&#xff0c;不同服务器方法不一&#xff0c;根据自身服务器系统可百度。 2、运行内存被占满&#xff1a;运行内存被占满就好像我们手机的运行内存一样&#xff0c;一旦同时运行较多的程序或软件&#xff0c;那么运行内存就会 出现这种情…...

HTML复习笔记

HTML&#xff08;超文本标记语言&#xff09; 文章目录 HTML&#xff08;超文本标记语言&#xff09;1.HTML1.概念2.标签2.1双标签超链接音频标签视频标签无序列表有序列表定义列表表格合并单元格 表单表单项单选框-**radio**文件上传-file多选框-checkbox 下拉菜单文本域-text…...

「五度情报站」网罗全量企业情报,找客户、查竞品、寻商机!

在当下严峻的市场经济环境下&#xff0c;准确、及时的情报信息&#xff0c;就如同指引企业前行的明灯&#xff0c;能够让企业在风起云涌的市场大潮中保持敏锐的洞察力&#xff0c;掌握最新的市场动态&#xff0c;洞悉竞争对手的一举一动&#xff0c;先知先动&#xff0c;保持竞…...

Ubuntu 22.04‘Temporary failure resolving‘ 解决方案

终极解决方案 首先安装resolvconf sudo apt-get install resolvconf 使用 cd /etc/resolvconf/resolv.conf.d/ 进入文件夹&#xff0c;使用 ls 查看目录&#xff0c;会显示 base head tail 使用 sudo vim base 编辑base文件&#xff0c; 进入时为空&#xff0c;点击 i 添加 …...

移动电源被亚马逊下架怎么办?UL2056认证解析

亚马逊下架移动电源isting突然被下架了&#xff0c;这到底怎么回事&#xff1f;移动电源UL2056认证怎么做&#xff1f; 卖家随后就咨询客服客服原因&#xff1a; 亚马逊在4月25日开始实行对于充电宝品类产品的销售限制。发布此限制的原因是基于安全因素&#xff1a;锂离子便携式…...

ssm+vue的课程网络学习平台管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的课程网络学习平台管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体…...

10月13日上课内容 Ansible 的脚本 --- playbook 剧本

playbooks 本身由以下各部分组成 &#xff08;1&#xff09;Tasks&#xff1a;任务&#xff0c;即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 &#xff08;2&#xff09;Variables&#xff1a;变量 &#xff08;3&#xff09;Templates&#xff1a;模…...

碰撞检测算法——分离轴算法在Unity中实现(二)

一、介绍 分离轴算法&#xff08;简称SAT&#xff09;通常用于检查两个简单多边形&#xff08;凸边形&#xff09;之间或多边形与圆之间的碰撞。本质上&#xff0c;如果您能够绘制一条线来分隔两个多边形&#xff0c;则它们不会发生碰撞&#xff0c;如果找不到一条线来分割两个…...

04在命令行中使用Maven命令创建Maven版的Web工程,并将工程部署到服务器的步骤

创建Maven版的Web工程 使用命令生成Web工程 使用mvn archetype:generate命令生成Web工程时&#xff0c;需要使用一个专门生成Web工程骨架的archetype(参照官网看到它的用法) -D表示后面要附加命令的参数&#xff0c;字母D和后面的参数是紧挨着的&#xff0c;中间没有任何其它…...

什么是指标体系,怎么搭建一套完整的指标体系?(附PDF素材)

什么是指标体系&#xff0c;怎么搭建一套完整的指标体系&#xff1f;数字化转型过程中&#xff0c;这个问题一直困扰着数据分析师。主要体现在&#xff1a; 各部门根据业务需求&#xff0c;都有一部分量化指标&#xff0c;但不够全面&#xff0c;对企业整体数据分析应用能力提…...

Windows提权方法论

Windows提权方法论 1.溢出漏洞提权2.计划任务提权3.SAM文件提权4.启动项提权5.不带引号的服务路径提权 1.溢出漏洞提权 溢出提权攻击的基本原理是&#xff0c;通过向目标系统发送过长的输入数据&#xff0c;超出了程序所分配的缓冲区大小&#xff0c;导致溢出。攻击者可以利用…...

推荐系统领域,over-uniform和oversmoothing问题

在推荐系统领域&#xff0c;“over-uniform” 和 “oversmoothing” 是与模型性能和推荐结果相关的两个概念&#xff0c;它们通常用于描述模型的行为和性能问题。以下是它们的区别&#xff1a; Over-Uniform&#xff08;过于一致&#xff09;&#xff1a; Over-Uniform 推荐系…...

360测试开发技术面试题目

最近面试了360测试开发的职位&#xff0c;将面试题整理出来分享~ 一、java方面 1、java重载和重写的区别 重载overloading 多个方法、相同的名字&#xff0c;不同的参数 重写overwrite 子类继承父类&#xff0c;对方法进行重写 2、java封装的特性 可以改变内部实现&#xff0c;…...

智能井盖传感器扣好“城市纽扣”,让市民脚下更有安全感

随着城市化进程的快速推进&#xff0c;城市基础设施的维护和管理面临着日益严峻的挑战。作为城市生命线的重要组成部分&#xff0c;城市井盖在保障城市安全和稳定运行方面具有举足轻重的地位。然而&#xff0c;日益繁重的城市交通压力使得井盖的维护和管理问题逐渐显现。 城市井…...

1 随机事件与概率

首先声明【这个括号内的都是批注】 文章目录 1 古典概型求概率1.1 随机分配问题【放球】例子 1.2 简单随机抽样问题【取球】例子 2 几何概型求概率例子 3 重要公式求概率3.1 对立3.2 互斥3.3 独立3.4 条件&#xff08;要做分母的必须大于0&#xff09;例子 3.5 不等式或包含例…...

计算机视觉--通过HSV和YIQ颜色空间处理图像噪声

计算机视觉 文章目录 计算机视觉前言一、实现步骤二、实现总结 前言 利用HSV和YIQ颜色空间处理图像噪声。在本次实验中&#xff0c;我们使用任意一张图片&#xff0c;通过RGB转HSV和YIQ的操作&#xff0c;加入了椒盐噪声并将其转换回RGB格式&#xff0c;最终实现对图像的噪声处…...

WPF中prism模块化

1、参照&#xff08;wpf中prism框架切换页面-CSDN博客&#xff09;文中配置MainView和MainViewModel 2、模块其实就是引用类库&#xff0c;新建两个类库ModuleA ModuleB&#xff0c;修改输出类型为类库,并配置以下文件&#xff1a; ModuleA ModuleAProfile ModuleB Module…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...