排序算法-快速排序法(QuickSort)
排序算法-快速排序法(QuickSort)
1、说明
快速排序法是由C.A.R.Hoare提出来的。快速排序法又称分割交换排序法,是目前公认的最佳排序法,也是使用分而治之(Divide and Conquer)的方式,会先在数据中找到一个虚拟的中间值,并按此中间值将所有打算排序的数据分为两部分。其中小于中间值的数据放在左边,而大于中间值的数据放在右边,再以同样的方式分别处理左右两边的数据,直到排序完为止。操作与分割步骤如下:
假设有n项记录,其键值为
。
- 先假设K的值为第一个键值。
- 从左向右找出键值,使得 。 
- 从左向右找出键值,使得 。 
- 如果,那么 与 互换,并回到步骤2。 
- 如果,那么将 与 互相,并以 为基准点分割成左、右两部分,然后针对左、右两边执行步骤1~5,直到左边键值等于右边键值为止。 
2、算法分析
- 在最好情况和平均情况下,时间复杂度为。在最坏情况下就是每次挑中的中间值不是最大就是最小的,其时间复杂度为 。 
- 快速排序法不是稳定排序法。
- 在最坏情况下,空间复杂度为,而在最好情况下,空间复杂度为 。 
- 快速排序法是平均运行时间最快的排序法。
3、C++代码
#include<iostream>
using namespace std;void Print(int tempData[], int tempSize) {for (int i = 0; i < tempSize; i++) {cout << tempData[i] << "  ";}cout << endl;
}void Quick(int tempData[], int tempLeft, int tempRight) {int temp;int leftIndex;int rightIndex;int t;if (tempLeft < tempRight) {leftIndex = tempLeft + 1;rightIndex = tempRight;while (true) {for (int i = tempLeft + 1; i < tempRight; i++) {if (tempData[i] >= tempData[tempLeft]) {leftIndex = i;break;}leftIndex++;}for (int j = tempRight; j > tempLeft + 1; j--) {if (tempData[j] <= tempData[tempLeft]) {rightIndex = j;break;}rightIndex--;}if (leftIndex < rightIndex) {temp = tempData[leftIndex];tempData[leftIndex] = tempData[rightIndex];tempData[rightIndex] = temp;}else {break;}}if (leftIndex >= rightIndex) {temp = tempData[tempLeft];tempData[tempLeft] = tempData[rightIndex];tempData[rightIndex] = temp;Quick(tempData, tempLeft, rightIndex - 1);Quick(tempData, rightIndex + 1, tempRight);}}
}int main() {const int size = 10;int data[100] = { 32,5,24,55,40,81,17,48,25,71 };//32  5  24  55  40  81  17  48  25  71//32  5  24  25  40  81  17  48  55  71//32  5  24  25  17  81  40  48  55  71//17  5  24  25  32  81  40  48  55  71//5  17  24  25  32  81  40  48  55  71//5  17  25  24  32  81  40  48  55  71//5  17  25  24  32  71  40  48  55  81//5  17  25  24  32  55  40  48  71  81//5  17  25  24  32  48  40  55  71  81//5  17  25  24  32  40  48  55  71  81Print(data, size);Quick(data, 0, size - 1);Print(data, size);return 0;
}输出结果

相关文章:
 
排序算法-快速排序法(QuickSort)
排序算法-快速排序法(QuickSort) 1、说明 快速排序法是由C.A.R.Hoare提出来的。快速排序法又称分割交换排序法,是目前公认的最佳排序法,也是使用分而治之(Divide and Conquer)的方式,会先在数…...
 
Python 简介
一、Python 简介 Python 是著名的“龟叔” Guido van Rossum 在 1989 年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言。牛人就是牛人,为了打发无聊时间竟然写了一个这么牛皮的编程语言。 现在,全世界差不多有 600 多种编程语言&am…...
 
grafana api创建dashboard 记录
文章目录 json model导入申请api key创建dashboard删除dashboard json model导入 直接在ui通过json model 导入,开发自己用还好,但对非开发人员不太友好,故考虑通过api后台自动创建 api doc : https://grafana.com/docs/grafana/v9.3/devel…...
 
局域网上IP多播与IP单播关于MAC地址的区别
IP单播进行到局域网上的时候: 网际层使用IP地址进行寻址,各路由器收到IP数据报后,根据其首部中的目的IP地址的网络号部分,基于路由表进行查表转发。 查表转发的结果可指明IP数据报的下一跳路由器的IP地址,但无法指明…...
三数之和[中等]
优质博文:IT-BLOG-CN 一、题目 给你一个整数数组nums,判断是否存在三元组[nums[i], nums[j], nums[k]]满足i ! j、i ! k且j ! k,同时还满足nums[i] nums[j] nums[k] 0。请你返回所有和为0且不重复的三元组。 注意:答案中不可以…...
 
基于天牛须优化的BP神经网络(分类应用) - 附代码
基于天牛须优化的BP神经网络(分类应用) - 附代码 文章目录 基于天牛须优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.天牛须优化BP神经网络3.1 BP神经网络参数设置3.2 天牛须算法应用 4.测试结果&#x…...
 
渗透波菜网站
免责声明 本文发布的工具和脚本,仅用作测试和学习研究,禁止用于商业用途,不能保证其合法性,准确性,完整性和有效性,请根据情况自行判断。如果任何单位或个人认为该项目的脚本可能涉嫌侵犯其权利,…...
Spring Boot:Dao层-实例介绍
目录 Dao层的作用Dao层的特点与 Service 层和 Controller 层的关系实例介绍MenuDaoOperatorLogDaoRoleDaoUserDao四个文件的共同点引用的包使用Repository注解继承JpaRepository接口接口的实体类的主键类型使用 Query()注解 Dao层的作用 负责与数据库进行交互,主要…...
 
接口测试入门:深入理解接口测试!
很多人会谈论接口测试。到底什么是接口测试?如何进行接口测试?这篇文章会帮到你。 一、前端和后端 在谈论接口测试之前,让我们先明确前端和后端这两个概念。 前端是我们在网页或移动应用程序中看到的页面,它由 HTML 和 CSS 编写…...
 
Redis微服务架构
Redis微服务架构 缓存设计 缓存穿透 缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,通常出于容错的考虑,如果从存储层查不到数据则不写入缓层。 缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去…...
 
【C++】 局部对象,引用返回
1、new 关键字 会在堆内申请空间,如果仅仅是普通调用构造函数,不会在堆内开辟空间。 2、函数调用会形成栈帧,进行压栈操作,函数调用结束,会进行弹栈。 函数内的局部对象,会随着弹栈,而被销毁(…...
 
线性代数中涉及到的matlab命令-第二章:矩阵及其运算
目录 1,矩阵定义 2,矩阵的运算 3,方阵的行列式和伴随矩阵 4,矩阵的逆 5,克莱默法则 6,矩阵分块 1,矩阵定义 矩阵与行列式的区别: (1)形式上行列式…...
 
计算机毕业设计选什么题目好?springboot 美食推荐系统
✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…...
 
爆肝整理,Jmeter接口性能测试-跨线程调用变量实操(超详细)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、Jmeter中线程运…...
 
Maven导入程序包jakarta.servlet,但显示不存在
使用前提:(Tomcat10版本)已知tomcat10版本之后,使用jakart.servlet。而tomcat9以及之前使用javax.servlet。 问题描述:在maven仓库有导入了Jakarta程序包,但是界面仍然显示是javax。(下图&…...
 
es6(二)——常用es6说明
ES6的系列文章目录 es6(一)——var和let和const的区别 文章目录 ES6的系列文章目录一、变量的结构赋值1.数组的结构赋值2.对象的结构赋值 二、模板字符串三、扩展运算符1.字符串的使用2.数组的使用 四、箭头函数1.普通函数的定义2.箭头函数的定义3.箭头…...
 
经典垃圾回收器
1.各垃圾回收器之间的配合使用关系 2.垃圾回收器的种类 2.1 Serial收集器(默认新生代收集器) Serial收集器是历史最悠久的收集器,曾经是新生代收集器的唯一选择,它是一个单线程工作的收集器,其“单线程”的意义不仅仅…...
 
台达DOP-B07S410触摸屏出现HMI no response无法上传的解决办法
台达DOP-B07S410触摸屏出现HMI no response无法上传的解决办法 台达触摸屏(B07S410)在上载程序时(显示No response from HMI)我以前的电脑是WIN7的,从来没出现过这样的问题,现在换成win10的,怎么都不行,(USB显示是一个大容量存储)换一台电脑(win10)有些行,有些不行…...
 
[资源推荐] 复旦大学张奇老师科研分享
刷B站的时候首页给我推了这个:【直播回放】复旦大学张奇教授亲授:人工智能领域顶会论文的发表指南先前也散漫地读了些许论文,但没有在一些宏观的方法论下去训练,读的时候能感觉出一些科研的套路,论文写作的套路&#x…...
 
C++数位动态规划算法:统计整数数目
题目 给你两个数字字符串 num1 和 num2 ,以及两个整数 max_sum 和 min_sum 。如果一个整数 x 满足以下条件,我们称它是一个好整数: num1 < x < num2 min_sum < digit_sum(x) < max_sum. 请你返回好整数的数目。答案可能很大&…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
 
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
 
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
 
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
 
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
 
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
 
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
 
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
 
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
