当前位置: 首页 > news >正文

Linux网络编程系列之UDP组播

一、什么是UDP组播

        UDP组播是指使用用户数据报协议(UDP)实现的组播方式。组播是一种数据传输方式,允许单一数据包同时传输到多个接收者。在UDP组播中,一个数据包可以被多个接收者同时接收,这样可以降低网络传输的负载和提高数据传输效率。

二、特性

        1、支持单向的多对多通信:UDP组播可以同时将一个数据包传输给多个接收者,使多个接收者能够同时获取到相同的数据。

        2、不可靠性:跟普通的UDP一样,UDP组播只提供不可靠的数据传输服务。如果某个接收者没有接收到数据包,发送者不会得到任何提示或反馈信息。

        3、可扩展性:UDP组播支持动态加入和退出组播组,能够自适应地处理组播成员的加入和离开(聊天群里的进群和退群操作)。

        4、低延迟:UDP组播传输的数据包不需要在接收方重新组装,可以直接进行处理,因此具有很低的传输延迟。

        5、高效:UDP组播传输的数据包只需要经过一次发送操作,就可以同时传输到多个接收者,可以有效地降低网络传输的负载。

        6、简单易用:UDP组播不需要复杂的配置和管理,使用简单,能够快速搭建起基于组播的多媒体通信系统。

三、使用场景

        1、多媒体流媒体:UDP组播可以在局域网或广域网上传输音视频流,能够快速地向多个接收者发送相同的视频和音频数据,避免了建立多个点对点的连接。

        2、 分布式应用的数据分发:UDP组播可以实现高效的数据分发,例如在大型集群环境下,可以将某些服务的状态信息广播给所有节点,使得所有节点都能够及时了解到最新的信息。

        3、网络游戏:UDP组播可以用于多人联机游戏,使得多个玩家能够同时收到相同的游戏状态和动作,提高游戏体验。

        4、 网络广播:UDP组播可以用于向多个设备广播事件和消息,例如路由器可以向所有连接的设备发送网络配置信息、DHCP服务器可以向所有设备广播IP地址信息等。

        5、实时数据更新:UDP组播可以用于实时的数据更新,例如在金融行业,可以订阅某些财经数据的实时更新,以便及时响应市场变化。

        可以把UDP组播简单理解为群聊。

四、UDP组播通信流程

        1、发送方

        (1)、建立套接字。使用socket()

        (2)、设置端口复用。使用setsockopt()(可选,推荐)

        (3)、绑定自己的IP地址和端口号。使用bind()(可以省略)

        (4)、发送数据,接收方IP地址要填写为组播地址。使用sendto()

        (5)、关闭套接字。使用close()

        2、接收方

        (1)、建立套接字。使用socket()

        (2)、定义并初始化一个组播结构体。使用struct  ip_mreq;

        (3)、给套接字加入组播属性。使用setsockopt()

        (4)、绑定自己的IP地址和端口号。使用bind(),不可以省略

        (5)、接收数据。使用recvfrom()

        (6)、关闭套接字。使用close()

五、相关函数API

          1、建立套接字

// 建立套接字 
int socket(int domain, int type, int protocol);// 接口说明返回值:成功返回一个套接字文件描述符,失败返回-1参数domain:用来指定使用何种地址类型,有很多,具体看别的资源(1)PF_INET 或者 AF_INET 使用IPV4网络协议(2)其他很多的,看别的资源参数type:通信状态类型选择,有很多,具体看别的资源(1)SOCK_STREAM    提供双向连续且可信赖的数据流,即TCP(2)SOCK_DGRAM     使用不连续不可信赖的数据包连接,即UDP参数protocol:用来指定socket所使用的传输协议编号,通常不用管,一般设为0

           2、设置端口状态

// 设置端口的状态
int setsockopt(int sockfd, int level, int optname,const void *optval, socklen_t optlen);// 接口说明返回值:成功返回0,失败返回-1参数sockfd:待设置的套接字参数level: 待设置的网络层,一般设成为SOL_SOCKET以存取socket层参数optname:待设置的选项,有很多种,具体看别的资源,这里讲常用的(1)、SO_REUSEADDR    允许在bind()过程中本地地址可复用,即端口复用(2)、SO_BROADCAST    使用广播的方式发送,通常用于UDP广播(3)、SO_SNDBUF       设置发送的暂存区大小(4)、SO_RCVBUF       设置接收的暂存区大小(5)、IP_ADD_MEMBERSHIP 设置为组播参数optval:待设置的值参数optlen:参数optval的大小,即sizeof(optval)// 组播结构体
struct ip_mreq
{struct in_addr imr_multiaddr;    // 多播组的IP地址,就是组播的IP地址struct in_addr imr_interface;    // 需要加入到组的IP地址,就是自己的IP地址
};    

         3、绑定IP地址和端口号

// 绑定自己的IP地址和端口号int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen);// 接口说明返回值:参数sockfd:待绑定的套接字参数addrlen:参数addr的大小,即sizeof(addr)参数addr:IP地址和端口的结构体,通用的结构体,根据sockfd的类型有不同的定义当sockfd的domain参数指定为IPV4时,结构体定义为struct sockaddr_in{unsigned short int sin_family;    // 需与sockfd的domain参数一致uint16_t sin_port;            // 端口号struct in_addr sin_addr;      // IP地址 unsigned char sin_zero[8];    // 保留的,未使用};struct in_addr{uin32_t s_addr;}
// 注意:网络通信时,采用大端字节序,所以端口号和IP地址需要调用专门的函数转换成网络字节序

         4、字节序转换接口 

// 第一组接口
// 主机转网络IP地址,输入主机IP地址
uint32_t htonl(uint32_t hostlong);// 主机转网络端口,输入主机端口号
uint16_t htons(uint16_t hostshort);    // 常用// 网络转主机IP,输入网络IP地址
uint32_t ntohl(uint32_t netlong);// 网络转主机端口,输入网络端口
uint16_t ntohs(uint16_t netshort);// 第二组接口,只能用于IPV4转换,IP地址
// 主机转网络
int inet_aton(const char *cp, struct in_addr *inp);// 主机转网络
in_addr_t inet_addr(const char *cp);    // 常用// 网络转主机
int_addr_t inet_network(const char *cp);// 网络转主机
char *inet_ntoa(struct in_addr in);    // 常用// 将本地IP地址转为网络IP地址
int inet_pton(int af, const char *src, void *dst);
// 参数说明:参数af:选择是哪一种协议族,IPV4还是IPV6参数src:本地IP地址参数dst:将本地IP地址转为网络IP地址存储到这里

           5、发送数据

// UDP协议发送数据
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,const struct sockaddr *dest_addr, socklen_t addrlen);// 接口说明返回值:成功返回成功发送的字节数,失败返回-1参数sockfd:发送者的套接字参数buf:发送的数据缓冲区参数len:发送的长度参数flags:一般设置为0,还有其他数值,具体查询别的资源参数dest_addr:接收者的网络地址参数addrlen:接收者的网络地址大小,即sizeof(dest_addr)

         6、接收数据

// UDP协议接收数据
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);// 接口说明:返回值:成功返回成功接收的字节数,失败返回-1参数sockfd:接收者的套接字参数buf:接收数据缓的冲区参数len:接收的最大长度参数flags:一般设置为0,还有其他数值,具体查询别的资源参数src_addr:发送者的网络地址,可以设置为NULL参数addrlen:  发送者的网络地址大小,即sizeof(src_addr)

          7、关闭套接字

// 关闭套接字
int close(int fd);// 接口说明返回值:成功返回0,失败返回-1参数fd:套接字文件描述符

六、案例

       实现UDP组播的演示

        发送端GroupSend.c

// UDP组播发送方的案例#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>       
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>#define SEND_IP   "192.168.64.128"    // 记得改为自己IP
#define SEND_PORT 10000   // 不能超过65535,也不要低于1000,防止端口误用int main(int argc, char *argv[])
{// 1、建立套接字,使用IPV4网络地址,UDP协议int sockfd = socket(AF_INET, SOCK_DGRAM, 0);if(sockfd == -1){perror("socket fail");return -1;}// 2、设置端口复用(推荐)int optval = 1; // 这里设置为端口复用,所以随便写一个值int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval));if(ret == -1){perror("setsockopt fail");close(sockfd);return -1;}// 3、绑定自己的IP地址和端口号(可以省略)struct sockaddr_in send_addr = {0};socklen_t addr_len = sizeof(struct sockaddr);send_addr.sin_family = AF_INET;   // 指定协议为IPV4地址协议send_addr.sin_port = htons(SEND_PORT);  // 端口号send_addr.sin_addr.s_addr = inet_addr(SEND_IP); // IP地址ret = bind(sockfd, (struct sockaddr*)&send_addr, addr_len);if(ret == -1){perror("bind fail");close(sockfd);return -1;}// 4、发送数据,往组播地址uint16_t port = 0;  // 端口号char ip[20] = {0};  // IP地址struct sockaddr_in recv_addr = {0};char msg[128] = {0};    // 数据缓冲区// 注意输入组播地址,范围是D类网络地址,224.0.0.1~239.255.255.254printf("please input receiver IP and port\n");scanf("%s %hd", ip, &port);printf("IP = %s, port = %hd\n", ip, port);recv_addr.sin_family = AF_INET;   // 指定用IPV4地址recv_addr.sin_port = htons(port); // 接收者的端口号recv_addr.sin_addr.s_addr = inet_addr(ip);    // 接收者的IP地址while(getchar() != '\n');   // 清空多余的换行符while(1){printf("please input data:\n");fgets(msg, sizeof(msg)/sizeof(msg[0]), stdin);// 发送数据,注意要填写接收者的地址ret = sendto(sockfd, msg, strlen(msg), 0, (struct sockaddr*)&recv_addr, addr_len);if(ret > 0){printf("success: send %d bytes\n", ret);}}// 5、关闭套接字close(sockfd);return 0;
}

        接收端GroupRecv.c

  

// UDP组播接收方的案例#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>       
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>#define RECV_IP   "192.168.64.128"    // 记得改为自己的地址#define GROUP_IP   "224.0.0.10"       // 组播地址
#define GROUP_PORT 20000   // 不能超过65535,也不要低于1000,防止端口误用int main(int argc, char *argv[])
{// 1、建立套接字,使用IPV4网络地址,UDP协议int sockfd = socket(AF_INET, SOCK_DGRAM, 0);if(sockfd == -1){perror("socket fail");return -1;}// 2、定义并初始化一个组播结构体,设置组播IPstruct ip_mreq vmreq;inet_pton(AF_INET, GROUP_IP, &vmreq.imr_multiaddr); // 初始化组播地址inet_pton(AF_INET, RECV_IP, &vmreq.imr_interface);  // 把自己的地址加入到组中// 3、给套接字加入组播属性int ret = setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &vmreq, sizeof(vmreq));if(ret == -1){perror("setsockopt fail");close(sockfd);return -1;}// 4、绑定自己的IP地址和端口号(不可以省略)struct sockaddr_in recv_addr = {0};socklen_t addr_len = sizeof(struct sockaddr);recv_addr.sin_family = AF_INET;   // 指定协议为IPV4地址协议recv_addr.sin_port = htons(GROUP_PORT);  // 端口号,注意绑定为组播的端口号// recv_addr.sin_addr.s_addr = inet_addr(RECV_IP); // IP地址. 写下面的更好recv_addr.sin_addr.s_addr = htonl(INADDR_ANY);  // 本机内所有的IP地址ret = bind(sockfd, (struct sockaddr*)&recv_addr, addr_len);if(ret == -1){perror("bind fail");close(sockfd);return -1;}// 4、接收数据uint16_t port = 0;  // 端口号char ip[20] = {0};  // IP地址struct sockaddr_in send_addr = {0};char msg[128] = {0};    // 数据缓冲区while(1){// 接收数据,注意使用发送者的地址来接收ret = recvfrom(sockfd, msg, sizeof(msg)/sizeof(msg[0]), 0, (struct sockaddr*)&send_addr, &addr_len);if(ret > 0){memset(ip, 0, sizeof(ip));  // 先清空IPstrcpy(ip, inet_ntoa(send_addr.sin_addr));    // 网络IP转主机IPport = ntohs(send_addr.sin_port); // 网络端口号转主机端口号printf("[%s:%d] send data: %s\n", ip, port, msg);memset(msg, 0, sizeof(msg));    // 清空数据区}}// 5、关闭套接字close(sockfd);return 0;
}

      通信演示 

        注:第一幅图只有一台主机,不好演示;第二幅图有两台主机,一台本机,另外一台用ssh连接,实现了组播。

七、总结

       组播是一种数据传输方式,允许单一数据包同时传输到多个接收者。在UDP组播中,一个数据包可以被多个接收者同时接收,这样可以降低网络传输的负载和提高数据传输效率。组播主要应用以群聊的场景。UDP组播的通信流程,跟UDP的广播的通信流程大致相同,但是要注意组播接收方要定义一个组播结构体,然后把自己的IP地址加入到组播中。可以结合案例加深对组播的理解。

相关文章:

Linux网络编程系列之UDP组播

一、什么是UDP组播 UDP组播是指使用用户数据报协议&#xff08;UDP&#xff09;实现的组播方式。组播是一种数据传输方式&#xff0c;允许单一数据包同时传输到多个接收者。在UDP组播中&#xff0c;一个数据包可以被多个接收者同时接收&#xff0c;这样可以降低网络传输的负载和…...

设计模式~状态模式(state)-23

目录 (1)优点&#xff1a; (2)缺点&#xff1a; (3)使用场景&#xff1a; (4)注意事项&#xff1a; (5)应用实例&#xff1a; 代码 在状态模式&#xff08;State Pattern&#xff09;中&#xff0c;类的行为是基于它的状态改变的。这种类型的设计模式属于行为型模式。在状…...

linux环境下使用lighthouse与selenium

一、安装谷歌浏览器、谷歌浏览器驱动、lighthouse shell脚本 apt update && apt -y upgrade apt install -y curl curl -fsSL https://deb.nodesource.com/setup_18.x | bash apt install -y nodejs apt install -y npm npm install -g lighthouse apt-get install -y …...

NeuroImage | 右侧颞上回在语义规则学习中的作用:来自强化学习模型的证据

在现实生活中&#xff0c;许多规则的获取通常需要使用语言作为桥梁&#xff0c;特别是语义在信息传递中起着至关重要的作用。另外&#xff0c;个体使用的语言往往具有明显的奖励和惩罚元素&#xff0c;如赞扬和批评。一种常见的规则是寻求更多的赞扬&#xff0c;同时避免批评。…...

uni-app编程checkbox-group获取选中的每个checkbox的value值

uni-app编程checkbox-group获取选中的每个checkbox的value值_uniappcheckboxvalue-CSDN博客...

数组——螺旋矩阵II

文章目录 一、题目二、题解 题目顺序&#xff1a;代码随想录算法公开课&#xff0c;b站上有相应视频讲解 一、题目 59. Spiral Matrix II Given a positive integer n, generate an n x n matrix filled with elements from 1 to n2 in spiral order. Example 1: Input: n …...

反范式化设计

反范式化设计与范式化设计相对立。范式化设计是将数据组织成多个表&#xff0c;以最小化数据的冗余和提高数据一致性。相反&#xff0c;反范式化设计是故意增加冗余&#xff0c;以提高查询性能和降低复杂性。反范式化设计通常用于需要高度优化的读取密集型应用程序&#xff0c;…...

CCF CSP认证 历年题目自练Day31

题目一 试题编号&#xff1a; 202206-1 试题名称&#xff1a; 归一化处理 时间限制&#xff1a; 500ms 内存限制&#xff1a; 512.0MB 题目背景 在机器学习中&#xff0c;对数据进行归一化处理是一种常用的技术。 将数据从各种各样分布调整为平均值为 0、方差为 1的标准分布&a…...

PCL点云处理之从两片点云中获取具有匹配关系的同名点对 (二百一十八)

PCL点云处理之从两片点云中获取具有匹配关系的同名点对 (二百一十八) 一、算法介绍二、算法实现1.代码2.效果一、算法介绍 点云配准的前提是,我们知道或者预测了一些匹配对,我们认为这些匹配对就是两片点云中的同名点,同名点就是由于激光扫描存在误差的关系,导致同一地物…...

MySQL Row size too large (> 8126)

错误信息 ERROR 1118 (42000) at line 901: Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMATDYNAMIC or ROW_FORMATCOMPRESSED may help. In current row format, BLOB prefix of 768 bytes is stored inline. 错误原因 这个问题…...

HUAWEI(26)——防火墙双机热备

一、拓扑 二、需求 PC2 ping PC1 FW1与FW2双机热备,FW1为active,FW2为Standby,抢占延时1s VRRP 三、配置 1.IP地址,防火墙接口加入区域 防火墙用户名:admin 防火墙旧密码:Admin@123 防火墙新密码:admin@123 [FW1]interface GigabitEthernet 1/0/0 [FW1-GigabitEthe…...

【ArcGIS】NDVI估算植被覆盖度FVC

NDVI估算植被覆盖度FVC NDVI计算植被覆盖度FVC计算NDVI估算植被覆盖度FVC操作步骤Step1&#xff1a;调出栅格计算器工具Step2:查找NDVIStep3: 参考 NDVI计算 植被覆盖度FVC计算 NDVI估算植被覆盖度FVC操作步骤 Step1&#xff1a;调出栅格计算器工具 1、首先打开软件&#x…...

vscode用密钥文件连接ssh:如果一直要输密码怎么办

commandshiftP&#xff1a;打开ssh配置文件 加上这么一段&#xff0c;host就是你给主机起的名字 对IdentityFile进行更改&#xff0c;改成相应的密钥文件 然后commandshiftP链接到主机就可以了 但是有时候它会让输入密码 这是由于你给这个IdentityFile的权限太多了&#xf…...

【AI视野·今日Robot 机器人论文速览 第五十三期】Thu, 12 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Thu, 12 Oct 2023 Totally 25 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers Pixel State Value Network for Combined Prediction and Planning in Interactive Environments Authors Sascha Rosbach, St…...

【LeetCode第115场双周赛】100029. 和带限制的子多重集合的数目 | 前缀和背包 | 中等

题目内容 原题链接 给定一个长度为 n n n 的数组 n u m s nums nums 和一个区间左右端点 [ l , r ] [l,r] [l,r] 。 返回 n u m s nums nums 中子多重集合的和在闭区间 [ l , r ] [l, r] [l,r] 之间的 子多重集合的数目 。 子多重集合 指的是从数组中选出一些元素构成的 …...

ArcGIS笔记5_生成栅格文件时保存报错怎么办

本文目录 前言Step 1 直接保存到指定文件夹会报错Step 2 先保存到默认位置再数据导出到指定文件夹 前言 有时生成栅格文件时&#xff0c;保存在自定义指定的文件夹内会提示出错&#xff0c;而保存到默认位置则没有问题。因此可以通过先保存到默认位置&#xff0c;再数据导出到…...

YOLO目标检测——跌倒摔倒数据集【含对应voc、coco和yolo三种格式标签】

实际项目应用&#xff1a;公共安全监控、智能家居、工业安全等活动区域无监管情况下的人员摔倒事故数据集说明&#xff1a;YOLO目标检测数据集&#xff0c;真实场景的高质量图片数据&#xff0c;数据场景丰富。使用lableimg标注软件标注&#xff0c;标注框质量高&#xff0c;含…...

uniapp小程序实现绘制内容,生成海报并保存截图(Painter和Canvas两种方式举例)

一、Painter方法 Painter插件传送门 1.下载资源包 2.将资源包的如下部分 3.使用页面引入组件 ui样式 <paintercustomStyle=margin-left: 40rpx; height: 1000rpx;palette="{{palette}}"bind:imgOK="onImgOK"/>data 中数据(绘制内容,替换区域) pai…...

HTTPS双向认证及密钥总结

公钥私钥&#xff1a; 1)公钥加密&#xff0c;私钥解密&#xff1a;加解密 为什么不能私钥加密公钥解密&#xff1f; 私钥加密后&#xff0c;公钥是公开的都能解密&#xff0c;没有意义。 2)私钥签名&#xff0c;公钥验签&#xff1a;属于身份验证&#xff0c;防串改&#x…...

Mybatis用Byte[]存图片,前端显示图片

前端页面 static下 也就是说byte[] 转成JSON字符串后,和用BASE64编码后是一摸一样的,那么SpringBoot会自动将实体类转JSON字符串,也就是说根本不需要Base64编码 注意:两个值并非一摸一样,一个多了个双引号 byte[]的值前后有个双引号 有一点点区别 一个有双引号,一个没有…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...