当前位置: 首页 > news >正文

Opencv——颜色模型+通道分离与合并

视频加载/摄像头调用

VideoCapture允许一开始定义一个空的对象
VideoCapture video

VideoCapture(const String &filename,int apiPreference=CAP_ANY)
filename:读取的视频文件或者图像序列名称
apiPreference:读取数据时设置的属性,例如编码格式、是否调用OpenNi等

在这里插入图片描述
使用方法:video.get(CAP_PROP_FPS) 返回值即为视频的帧数

视频文件保存

VideoWriter(const String& filename,int fourcc,double fps,Size frameSizebool isColor = true)
  • filename:保存视频的地址和文件名,包含视频格式
  • fourcc:压缩帧的4字符编码器代码,详细参数在表2-7给出
  • fps:保存视频的帧率,即视频中每秒图像的张数
  • isColor:保存视频是否为彩色视频

图像颜色空间介绍

RGB颜色模型

在这里插入图片描述
图像数据类型间的相互转换

converTo(OutputArray m,int rtype,double alpha=1,double beta=0)
m:输出图像
rtype:转换后数据类型
alpha:缩放系数
beta:平移系数
示例:
a.convertTo(b,CV_32F,1/225.0,0)

HSV颜色模型

在这里插入图片描述

Gray颜色模型

在这里插入图片描述
彩色图像可以转换为灰度图像

多通道分离与合并

多通道分离

split(InputArray m,OutputArrayOfArrays mv)
m:待分离的多通道图像
mv:分离后的单通道图像,为向量vector形式
	Mat imgs[3];Mat img = imread("C:/Users/86159/Desktop/1.jpg",1);split(img, imgs);Mat img0, img1, img2;img0 = imgs[0];img1 = imgs[1];img2 = imgs[2];cin.get();

多通道合并

merge(InputArrayOfArrays mv,OutputArray dst)
mv:需要合并的图像向量vector,其中每个图像必须拥有相同的尺寸和数据类型
dst:合并后输出的图像,通道数等于所有输入图像的通道数综合
Mat zero = Mat::zeros(Size(img.cols,img.rows),CV_8UC1);// 合并后的图像第二三个通道都是0vector<Mat> imgsV;imgsV.push_back(img0);imgsV.push_back(zero);imgsV.push_back(zero);Mat imgsVH;merge(imgsV, imgsVH);

相关文章:

Opencv——颜色模型+通道分离与合并

视频加载/摄像头调用 VideoCapture允许一开始定义一个空的对象 VideoCapture video VideoCapture(const String &filename,int apiPreferenceCAP_ANY) filename:读取的视频文件或者图像序列名称 apiPreference:读取数据时设置的属性&#xff0c;例如编码格式、是否调用Op…...

解码自然语言处理之 Transformers

自 2017 年推出以来&#xff0c;Transformer 已成为机器学习领域的一支重要力量&#xff0c;彻底改变了翻译和自动完成服务的功能。 最近&#xff0c;随着 OpenAI 的 ChatGPT、GPT-4 和 Meta 的 LLama 等大型语言模型的出现&#xff0c;Transformer 的受欢迎程度进一步飙升。这…...

【前端设计模式】之迭代器模式

迭代器模式是一种行为设计模式&#xff0c;它允许我们按照特定的方式遍历集合对象&#xff0c;而无需暴露其内部实现。在前端开发中&#xff0c;迭代器模式可以帮助我们更好地管理和操作数据集合。 迭代器模式特性 封装集合对象的内部结构&#xff0c;使其对外部透明。提供一…...

【Android知识笔记】图片专题(BitmapDrawable)

如何计算一张图片的占用内存大小? 注意是占用内存,不是文件大小可以运行时获取重要的是能直接掌握计算方法基础知识 Android 屏幕像素密度分类: (其实还有一种 ldpi = 120,不过这个已经绝种了,所以最低的只需关心mdpi即可) 上表中的比例为:m : h : xh : xxh: xxxh = …...

前端工程化知识系列(10)

目录 91. 了解前端工程化中的容器化和云部署概念&#xff0c;以及如何使用Docker和Kubernetes等工具来实现它们&#xff1f;92. 你如何管理前端项目的文档和知识共享&#xff0c;以确保团队成员都能理解和使用前端工程化工具和流程&#xff1f;93. 了解前端开发中的大规模和跨团…...

大数据flink篇之三-flink运行环境安装(一)单机Standalone安装

一、安装包下载地址 https://archive.apache.org/dist/flink/flink-1.15.0/ 二、安装配置流程 前提基础&#xff1a;Centos环境&#xff08;建议7以上&#xff09; 安装命令&#xff1a; 解压&#xff1a;tar -zxvf flink-xxxx.tar.gz 修改配置conf/flink-conf.yaml&#xff1…...

Redisson使用延时队列

延时队列 在开发中&#xff0c;有时需要使用延时队列。 比如&#xff0c;订单15分钟内未支付自动取消。 jdk延时队列 如果使用 jdk自带的延时队列&#xff0c;那么服务器挂了或者重启时&#xff0c;延时队列里的数据就会失效&#xff0c;可用性比较差。 Redisson延时队列 …...

基于php 进行每半小时钉钉预警

前言 业务场景&#xff1a;监控当前业务当出现并发情况时技术人员可以可以及时处理 使用技术栈&#xff1a; laravelredis 半小时触发一次报警信息实现思路 1、xshell脚本 具体参数就不详细解释了&#xff0c;想要详细了解可以自行百度 curl -H "Content-Type:appl…...

5.Python-使用XMLHttpRequest对象来发送Ajax请求

题记 使用XMLHttpRequest对象来发送Ajax请求&#xff0c;以下是一个简单的实例和操作过程。 安装flask模块 pip install flask 安装mysql.connector模块 pip install mysql-connector-python 编写app.py文件 app.py文件如下&#xff1a; from flask import Flask, reque…...

八皇后问题的解析与实现

问题描述 八皇后问题是一个古老而又著名的问题。 时间退回到1848年,国际西洋棋棋手马克斯贝瑟尔提出了这样的一个问题: 在88格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问一共有多少种摆法。 如何找到这所有的…...

论文浅尝 | 深度神经网络的模型压缩

笔记整理&#xff1a;闵德海&#xff0c;东南大学硕士&#xff0c;研究方向为知识图谱 链接&#xff1a;https://arxiv.org/abs/1412.6550 动机 提高神经网络的深度通常可以提高网络性能&#xff0c;但它也使基于梯度的训练更加困难&#xff0c;因为更深的网络往往更加强的非线…...

进阶JAVA篇- DateTimeFormatter 类与 Period 类、Duration类的常用API(八)

目录 1.0 DateTimeFormatter 类的说明 1.1 如何创建格式化器的对象呢&#xff1f; 1.2 DateTimeFormatter 类中的 format&#xff08;LocalDateTime ldt&#xff09; 实例方法 2.0 Period 类的说明 2.1 Period 类中的 between(localDate1,localDate2) 静态方法来创建对象。 3.…...

1.1 Windows驱动开发:配置驱动开发环境

在进行驱动开发之前&#xff0c;您需要先安装适当的开发环境和工具。首先&#xff0c;您需要安装Windows驱动开发工具包&#xff08;WDK&#xff09;&#xff0c;这是一组驱动开发所需的工具、库、示例和文档。然后&#xff0c;您需要安装Visual Studio开发环境&#xff0c;以便…...

Jetpack:009-kotlin中的lambda、匿名函数和闭包

文章目录 1. 概念介绍2. 使用方法2.1 函数类型的变量2.2 高阶函数 3. 内容总结4.经验分享 我们在上一章回中介绍了Jetpack中Icon和Imamg相关的内容&#xff0c;本章回中主要介绍Kotlin中的 lambda、匿名函数和闭包。闲话休提&#xff0c;让我们一起Talk Android Jetpack吧&…...

openGauss指定schema下全部表结构备份与恢复

本次测试针对openGauss版本为2.0.5 gs_dump指定schema下全部表结构信息备份 gs_dump database_name -U username -p port -F c -s -n schema_name -f schema.sqldatabase_name&#xff1a;数据库名&#xff0c;要备份的数据库名称 username&#xff1a;用户名&#xff0c;数据…...

干货:如何在前端统计用户访问来源?

在前端统计用户访问来源是一个常见的需求&#xff0c;通过获取访问来源信息&#xff0c;我们可以了解用户是通过直接访问、搜索引擎、外部链接等途径进入我们的网站或应用。下面是一个详细的介绍&#xff0c;包括方法和实现步骤。 一、获取HTTP Referer HTTP Referer是HTTP请…...

李宏毅生成式AI课程笔记(持续更新

01 ChatGPT在做的事情 02 预训练&#xff08;Pre-train&#xff09; ChatGPT G-Generative P-Pre-trained T-Transformer GPT3 ----> InstructGPT&#xff08;经过预训练的GPT3&#xff09; 生成式学习的两种策略 我们在使用ChatGPT的时候会注意到&#xff0c;网站上…...

nodejs+vue+elementui酒店客房服务系统mysql带商家

视图层其实质就是vue页面&#xff0c;通过编写vue页面从而展示在浏览器中&#xff0c;编写完成的vue页面要能够和控制器类进行交互&#xff0c;从而使得用户在点击网页进行操作时能够正常。 简单的说 Node.js 就是运行在服务端的 JavaScript。 前端技术&#xff1a;nodejsvueel…...

【网络协议】聊聊网络分层

常用的网络协议 首先我们输入www.taobao.com&#xff0c;会先经过DNS进行域名解析&#xff0c;转换为59.82.122.115的公网IP地址。然后就会发起请求&#xff0c;一般来说非加密的使用http&#xff0c;加密的使用https。上面是在应用层做的处理&#xff0c;那么接下来就是到传输…...

[开源]基于Vue+ElementUI+G2Plot+Echarts的仪表盘设计器

一、开源项目简介 基于SpringBoot、MyBatisPlus、ElementUI、G2Plot、Echarts等技术栈的仪表盘设计器&#xff0c;具备仪表盘目录管理、仪表盘设计、仪表盘预览能力&#xff0c;支持MySQL、Oracle、PostgreSQL、MSSQL、JSON等数据集接入&#xff0c;对于复杂数据处理还可以使用…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...