基于闪电连接过程优化的BP神经网络(分类应用) - 附代码
基于闪电连接过程优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于闪电连接过程优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.闪电连接过程优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 闪电连接过程算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用闪电连接过程算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.闪电连接过程优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 闪电连接过程算法应用
闪电连接过程算法原理请参考:https://blog.csdn.net/u011835903/article/details/120783760
闪电连接过程算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从闪电连接过程算法的收敛曲线可以看到,整体误差是不断下降的,说明闪电连接过程算法起到了优化的作用:



5.Matlab代码
相关文章:
基于闪电连接过程优化的BP神经网络(分类应用) - 附代码
基于闪电连接过程优化的BP神经网络(分类应用) - 附代码 文章目录 基于闪电连接过程优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.闪电连接过程优化BP神经网络3.1 BP神经网络参数设置3.2 闪电连接过程算…...
Linux性能优化--性能工具:网络
7.0 概述 本章介绍一些在Linux上可用的网络性能工具。我们主要关注分析单个设备/系统网络流量的工具,而非全网管理工具。虽然在完全隔离的情况下评估网络性能通常是无意义的(节点不会与自己通信),但是,调查单个系统在网络上的行为对确定本地配置和应用程…...
【Linux】线程互斥与同步
文章目录 一.Linux线程互斥1.进程线程间的互斥相关背景概念2互斥量mutex3.互斥量的接口4.互斥量实现原理探究 二.可重入VS线程安全1.概念2.常见的线程不安全的情况3.常见的线程安全的情况4.常见的不可重入的情况5.常见的可重入的情况6.可重入与线程安全联系7.可重入与线程安全区…...
敏捷开发中,Sprint回顾会的目的
Sprint回顾会的主要目的是促进Scrum团队的学习和持续改进。在每个Sprint结束后,团队聚集在一起进行回顾,以达到以下目标: 识别问题: 回顾会允许团队识别在Sprint(迭代)期间遇到的问题、挑战和障碍。这有助于…...
排序【七大排序】
文章目录 1. 排序的概念及引用1.1 排序的概念1.2 常见的排序算法 2. 常见排序算法的实现2.1 插入排序2.1.1基本思想:2.1.2 直接插入排序2.1.3 希尔排序( 缩小增量排序 ) 2.2 选择排序2.2.1基本思想:2.2.2 直接选择排序:2.2.3 堆排序 2.3 交换排序2.3.1冒…...
人大与加拿大女王大学金融硕士项目——立即行动,才是缓解焦虑的解药
!在这个经济飞速的发展的时代,我国焦虑症的患病率为7%,焦虑已经超越个体范畴,成为整个社会与时代的课题。焦虑,往往源于我们想要达到的,与自己拥有的所产生的差距。任何事情,开始做远比准备做更会给人带来成…...
老卫带你学---leetcode刷题(46. 全排列)
46. 全排列 问题: 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1:输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]示例 2&#x…...
6.6 图的应用
思维导图: 6.6.1 最小生成树 ### 6.6 图的应用 #### 主旨:图的概念可应用于现实生活中的许多问题,如网络构建、路径查询、任务排序等。 --- #### 6.6.1 最小生成树 **概念**:要在n个城市中建立通信联络网,则最少需…...
100问GPT4与大语言模型的关系以及LLMs的重要性
你现在是一个AI专家,语言学家和教师,你目标是让我理解语言模型的概念,理解ChatGPT 跟语言模型之间的关系。你的工作是以一种易于理解的方式解释这些概念。这可能包括提供 例子,提出问题或将复杂的想法分解成更容易理解的小块。现在…...
Linux:mongodb数据逻辑备份与恢复(3.4.5版本)
我在数据库aaa的里创建了一个名为tarro的集合,其中有三条数据 备份语法 mongodump –h server_ip –d database_name –o dbdirectory 恢复语法 mongorestore -d database_name --dirdbdirectory 备份 现在我要将aaa.tarro进行备份 mongodump --host 192.168.254…...
凉鞋的 Godot 笔记 109. 专题一 小结
109. 专题一 小结 在这一篇,我们来对第一个专题做一个小的总结。 到目前为止,大家应该能够感受到此教程的基调。 内容的难度非常简单,接近于零基础的程度,不过通过这些零基础内容所介绍的通识内容其实是笔者好多年的时间一点点…...
数据结构 - 4(栈和队列6000字详解)
一:栈 1.1 栈的概念 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原…...
MySQL InnoDB引擎深入学习的一天(InnoDB架构 + 事务底层原理 + MVCC)
目录 逻辑存储引擎 架构 概述 内存架构 Buffer Pool Change Buffe Adaptive Hash Index Log Buffer 磁盘结构 System Tablespace File-Per-Table Tablespaces General Tablespaces Undo Tablespaces Temporary Tablespaces Doublewrite Buffer Files Redo Log 后台线程 事务原…...
TX Text Control .NET Server for ASP.NET 32.0 Crack
TX Text Control .NET Server for ASP.NET 是VISUAL STUDIO 2022、ASP.NET CORE .NET 6 和 .NET 7 支持,将文档处理集成到 Web 应用程序中,为您的 ASP.NET Core、ASP.NET 和 Angular 应用程序添加强大的文档处理功能。 客户端用户界面 文档编辑器 将功能…...
Leetcode刷题详解——将x减到0的最小操作数
1. 题目链接:1658. 将 x 减到 0 的最小操作数 2. 题目描述: 给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素,然后从 x 中减去该元素的值。请注意,需要 修改 数组以供接下来的操作…...
精选免费热门api接口分享
IP归属地-IPv4城市级:根据IP地址查询归属地信息,支持到城市级,包含国家、省、市、和运营商等信息。IP归属地-IPv6城市级:根据IP地址(IPv6版本)查询归属地信息,支持到中国大陆地区(不…...
androidx.appcompat.widget.Toolbar最右边设置控件不能仅靠最右边
androidx.appcompat.widget.Toolbar最右边设置控件不能仅靠最右边 Android Toolbar左、中、右对齐-CSDN博客Android Toolbar左、中、右对齐默认的Android Toolbar中添加子元素view是从左到右依次添加。需要注意的是,Android Toolbar为自身的…...
Springboot整合WebSocket实现浏览器和服务器交互
Websocket定义 代码实现 引入maven依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency>配置类 import org.springframework.context.annotation.Bean;i…...
这些 channel 用法你都用起来了吗?
channel 是什么? channel 是GO语言中一种特殊的类型,是连接并发goroutine的管道 channel 通道是可以让一个 goroutine 协程发送特定值到另一个 goroutine 协程的通信机制。 关于 channel 的原理,channel通道需要注意的地方,之前…...
纽交所上市公司安费诺宣布将以1.397亿美元收购无线解决方案提供商PCTEL
来源:猛兽财经 作者:猛兽财经 猛兽财经获悉,纽交所上市公司安费诺(APH)宣布将以每股7美元现金,总价格1.397亿美元收购无线解决方案提供商PCTEL(PCTI)。 该交易预计将在第四季度或2024年初完成。 Lake Street Capital Markets担任…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
