当前位置: 首页 > news >正文

基于YOLOv8模型的水下目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的水下目标检测系统可用于日常生活中检测与定位鱼、水母、企鹅、海鹦、鲨鱼、海星、黄貂鱼,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种水下目标检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的水下目标数据集手动标注了鱼、水母、企鹅、海鹦、鲨鱼、海星、黄貂鱼这七个类别,数据集总计643张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的水下目标检测识别数据集包含训练集448张图片,验证集127张图片,测试集68张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示
在这里插入图片描述

相关文章:

基于YOLOv8模型的水下目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的水下目标检测系统可用于日常生活中检测与定位鱼、水母、企鹅、海鹦、鲨鱼、海星、黄貂鱼,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统…...

vue-cli脚手架创建项目时报错Error: command failed: npm install --loglevel error

项目背景 环境:vue-cli 5.x 在工程文件中,后端模块wms已经创建完成,现在想新建一个名为vue-web的前端模块 执行命令vue create vue-web时, 报错Error: command failed: npm install --loglevel error 问题分析及解决 排查过程…...

c语言练习92:链表的中间结点

链表的中间结点 链表的结点为空时无法访问其next成员否则会报错 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/typedef struct ListNode ListNode; struct ListNode* middleNode(struct ListNode* head){if(h…...

CentOS(4)——关于Linux软件下载时:amd64、x86、x86_64、arm64 的说明

目录 一、简介 二、常见的CPU架构 三、Linux查看CPU架构命令 ①arch命令 ②uname -a 命令 ③lscpu 一、简介 在安装GitLab Runner的时候,去清华源下载RPM包时发现同一个软件有许多不同架构的安装包,常见的有amd64、x86、x86_64、arm64这些架构&am…...

简单易学,让你拥有个性化的二维码

在数字化时代,二维码已经成为了我们日常生活的一部分。然而,大多数二维码都是简单而乏味的,缺乏个性和吸引力。这篇文章将向你介绍如何使用乔拓云等免费在线海报制作工具来制作艺术二维码,让你轻松掌握二维码的美化技巧。 1. 选择…...

开源原生android的视频编辑软件

videoEditAndroid 介绍 开源原生android的视频编辑软件 本人android 新手,也是边写边学习中,感觉写的很乱,功能虽已实现,但是会不断优化代码 也欢迎有兴趣的小伙伴加入 码农不易,欢迎 star 项目页面功能完成列表 视频选择(待完善) 静音 视频编辑 导…...

10kb的照片尺寸怎么弄?几个步骤轻松搞定!

为了图片方便在互联网上分享、传输或存储,我们常常会有缩小图片的需求,那么如何进行操作呢?下面分享了三种实用的方法。 方法一:使用嗨格式压缩大师 1、在电脑上打开安装好的“嗨格式压缩大师”,在首界面中点击“图片…...

uniapp-vue3-微信小程序-标签选择器wo-tag

采用uniapp-vue3实现, 是一款支持高度自定义的标签选择器组件&#xff0c;支持H5、微信小程序&#xff08;其他小程序未测试过&#xff0c;可自行尝试&#xff09; 可到插件市场下载尝试&#xff1a; https://ext.dcloud.net.cn/plugin?id14960 使用示例 <template>&…...

数据结构与算法-(9)---双端队列(Deque)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

DTI综述(更新中)

Deep Learning for drug repurposing&#xff1a;methods&#xff0c;datasets&#xff0c;and applications 综述读完&#xff0c;觉得少了点东西&#xff0c;自己写个DTI综述 Databases(包括但不限于文章中的) DATABASEDESCRIBEBindingDB有详细的drug信息和对应的target&a…...

封装一个滑块控制灯光组件

效果如下gif 只进行了基础的事件和布局&#xff0c;可优化的地方&#xff1a;luminance-box这个div加上后&#xff0c;由于和slider-run-way都是absolute定位&#xff0c;导致slider-run-way的点击事件无法设置值&#xff0c;只能通过滑块设置。暂时想不到咋处理&#xff0c;有…...

flutter循环

flutter for循环&#xff1a; Wrap(children: <Widget>[for (int i 0; i < (xx.yy.data?.items?.length ?? 0); i)TextButton(onPressed: (){}, child: Text("${xx.yy.data?.items?[i].name.toString()} (${xx.yy.data?.items?[i].connId.toString()})…...

2.3 如何使用FlinkSQL读取写入到JDBC(MySQL)

1、JDBC SQL 连接器 FlinkSQL允许使用 JDBC连接器&#xff0c;向任意类型的关系型数据库读取或者写入数据 添加Maven依赖 <dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1…...

Flink日志收集到数据库/kafka

引言 我们做项目过程中发现flink日志不同模式启动&#xff0c;存放位置不同&#xff0c;查找任务日志很不方便&#xff0c;具体问题如下&#xff1a; 原始flink的日志配置文件log4j-cli.properties appender.file.append false&#xff0c;取消追加&#xff0c;直接覆盖掉上…...

Go项目踩坑:go get下载超时,goFrame框架下的go项目里将vue项目的dist同步打包发布,go项目打包并压缩

Go项目踩坑&#xff1a;go get下载超时&#xff0c;goFrame框架下的go项目里将vue项目的dist同步打包发布&#xff0c;go项目打包并压缩 go get下载超时goFrame打包静态资源vue项目打包gf pack生成go文件 静态资源使用打包发布go项目交叉编译&#xff0c;省略一些不必要的信息通…...

DataCon【签到题】挖矿流量检测

【签到题】挖矿流量检测 文章目录 答案【多选】1. 个人电脑中了挖矿病毒通常有以下哪些表现&#xff1f;【单选】2. 在典型挖矿场景中&#xff0c;矿工和矿池之间目前最常用的通信协议是哪一个&#xff1f;【单选】3. 目前的虚拟货币挖矿场景中&#xff0c;最常采用的是哪种共识…...

Vivado详细使用教程 | LED闪烁示例

文章目录 整体流程第一步&#xff1a;新建工程第二步&#xff1a;设计输入第三步&#xff1a;功能仿真第四步&#xff1a;分析与综合第五步&#xff1a;约束输入第六步&#xff1a;设计实现第七步&#xff1a;下载比特流 整体流程 打开软甲------>新建工程------->设计输…...

一些经典的神经网络(第17天)

1. 经典神经网络LeNet LeNet是早期成功的神经网络&#xff1b; 先使用卷积层来学习图片空间信息 然后使用全连接层来转到到类别空间 【通过在卷积层后加入激活函数&#xff0c;可以引入非线性、增加模型的表达能力、增强稀疏性和解决梯度消失等问题&#xff0c;从而提高卷积…...

Hadoop-HA-Hive-on-Spark 4台虚拟机安装配置文件

Hadoop-HA-Hive-on-Spark 4台虚拟机安装配置文件 版本号步骤hadoopcore-site.xmlhdfs-site.xmlmapred-site.xmlslavesworkersyarn-site.xml hivehive-site.xmlspark-defaults.conf sparkhdfs-site.xmlhive-site.xmlslavesyarn-site.xmlspark-env.sh 版本号 apache-hive-3.1.3-…...

Hutool工具类参考文章

Hutool工具类参考文章 日期&#xff1a; 身份证&#xff1a;...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...