买卖股票的最佳时机 II[中等]
优质博文:IT-BLOG-CN
一、题目
给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润。
示例 1:
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第2天(股票价格= 1)的时候买入,在第3天(股票价格= 5)的时候卖出, 这笔交易所能获得利润= 5 - 1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第1天(股票价格= 1)的时候买入,在第5天 (股票价格= 5)的时候卖出, 这笔交易所能获得利润= 5 - 1 = 4。总利润为4。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为0。
1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104
二、代码
【1】动态规划: 定义状态dp[i][0]表示第i天交易完后手里没有股票的最大利润,dp[i][1]表示第i天交易完后手里持有一支股票的最大利润(i从0开始)。考虑dp[i][0]的转移方程,如果这一天交易完后手里没有股票,那么可能的转移状态为前一天已经没有股票,即dp[i−1][0],或者前一天结束的时候手里持有一支股票,即dp[i−1][1],这时候我们要将其卖出,并获得prices[i]的收益。因此为了收益最大化,我们列出如下的转移方程:dp[i][0]=max{dp[i−1][0],dp[i−1][1]+prices[i]}再来考虑dp[i][1],按照同样的方式考虑转移状态,那么可能的转移状态为前一天已经持有一支股票,即dp[i−1][1],或者前一天结束时还没有股票,即dp[i−1][0],这时候我们要将其买入,并减少prices[i]的收益。可以列出如下的转移方程:dp[i][1]=max{dp[i−1][1],dp[i−1][0]−prices[i]}
对于初始状态,根据状态定义我们可以知道第0天交易结束的时候dp[0][0]=0,dp[0][1]=−prices
因此,我们只要从前往后依次计算状态即可。由于全部交易结束后,持有股票的收益一定低于不持有股票的收益,因此这时候dp[n−1][0]的收益必然是大于dp[n−1][1]的,最后的答案即为dp[n−1][0]。
class Solution {public int maxProfit(int[] prices) {if (prices.length < 2) {return 0;}// 思路:通过二维数组表示当前的两种状态 prices[i][0] 表示持有现金 prices[i][1]表示持有股票,每次遍历获取Maxint[][] dp = new int[prices.length][2];// 初始化0dp[0][0] = 0;dp[0][1] = -prices[0];for (int i = 1; i < prices.length; i++) {dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);}return dp[prices.length - 1][0];}
}
注意到上面的状态转移方程中,每一天的状态只与前一天的状态有关,而与更早的状态都无关,因此我们不必存储这些无关的状态,只需要将dp[i−1][0]和dp[i−1][1]存放在两个变量中,通过它们计算出dp[i][0]和dp[i][1]并存回对应的变量,以便于第i+1天的状态转移即可。
class Solution {public int maxProfit(int[] prices) {int n = prices.length;int dp0 = 0, dp1 = -prices[0];for (int i = 1; i < n; ++i) {int newDp0 = Math.max(dp0, dp1 + prices[i]);int newDp1 = Math.max(dp1, dp0 - prices[i]);dp0 = newDp0;dp1 = newDp1;}return dp0;}
}
时间复杂度: O(n)其中n为数组的长度。一共有2n个状态,每次状态转移的时间复杂度为O(1),因此时间复杂度为O(2n)=O(n)。
空间复杂度: O(n)我们需要开辟O(n)空间存储动态规划中的所有状态。如果使用空间优化,空间复杂度可以优化至O(1)。
【2】贪心: 由于股票的购买没有限制,因此整个问题等价于寻找x个不相交的区间(li,ri]使得如下的等式最大化∑i=1xa[ri]−a[li]其中li表示在第li天买入,ri表示在第ri天卖出。同时我们注意到对于(li,ri]这一个区间贡献的价值a[ri]−a[li],其实等价于(li,li+1],(li+1,li+2],…,(ri−1,ri]这若干个区间长度为1的区间的价值和,即a[ri]−a[li]=(a[ri]−a[ri−1])+(a[ri−1]−a[ri−2])+…+(a[li+1]−a[li])因此问题可以简化为找x个长度为1的区间(li,li+1]使得∑i=1xa[li+1]−a[li]价值最大化。
贪心的角度考虑我们每次选择贡献大于0的区间即能使得答案最大化,因此最后答案为ans=∑i=1n−1max{0,a[i]−a[i−1]}其中n为数组的长度。需要说明的是,贪心算法只能用于计算最大利润,计算的过程并不是实际的交易过程。
考虑题目中的例子[1,2,3,4,5],数组的长度n=5,由于对所有的1≤i<n1都有a[i]>a[i−1],因此答案为ans=∑i=1n−1a[i]−a[i−1]=4但是实际的交易过程并不是进行4次买入和4次卖出,而是在第1天买入,第5天卖出。
class Solution {public int maxProfit(int[] prices) {int ans = 0;int n = prices.length;for (int i = 1; i < n; ++i) {ans += Math.max(0, prices[i] - prices[i - 1]);}return ans;}
}
时间复杂度: O(n)其中n为数组的长度。我们只需要遍历一次数组即可。
空间复杂度: O(1)只需要常数空间存放若干变量。
相关文章:
买卖股票的最佳时机 II[中等]
优质博文:IT-BLOG-CN 一、题目 给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得…...
前端开发调试技巧:如何在Component下选中当前插件并且查看当前插件信息
在react开发项目中,在Component下选中组件,然后在控制台输$r 按回车键即可输出该组件信息。例如 $r.props输出该组件的props参数。例子详情见如下截图...
你是否还迷茫要不要学习Linux?
近几年Linux这个词好像很流行,无论是现实工作中,还是在网络信息中均可以听到或者看到有关Linux相关的内容,可以说Linux无处不在。说到这,有人可能会问了,我对Linux比较感兴趣,但是没有接触过Linuxÿ…...
leetcode(1)链表
# 1. 定义一个链表节点 class ListNode:def __init__(self, val0, next_nodeNone):self.val valself.next_node next_node# 2. 定义一个 node头节点 class LinkedList:def __init__(self):self.head None# 3.链表查找元素 get(index): def get_node(self, index)…...
spring boot Rabbit高级教程
消息可靠性 生产者重试机制 首先第一种情况,就是生产者发送消息时,出现了网络故障,导致与MQ的连接中断。 为了解决这个问题,SpringAMQP提供的消息发送时的重试机制。即:当RabbitTemplate与MQ连接超时后,…...
FTP的魅力:构建高效的文件传输基础
1 ftp介绍 1.1 ftp服务器安装 dnf install vsftpd-3.0.3-31.el8.x86_64 -y # 安装ftp服务 systemctl enable --now vsftpd # 启动ftp服务 systemctl stop --now firewalld.service # 关闭防火墙,允许客户端访问anonymous_enableYES #启动匿名用户访问功能1.2 客户…...
70、window11+visual studio2019+共享内存进行数据传输
基本思想:服务端和客户端 写共享内存 #include <windows.h> #include <iostream> using namespace std;HANDLE g_EventRead; // 读信号灯 HANDLE g_EventWrite; // 写信号灯 // 定义共享数据class Writer { public:Writer(const int buf_size, const wchar_t…...
SSTI模板注入(flask) 学习总结
文章目录 Flask-jinja2 SSTI 一般利用姿势SSTI 中常用的魔术方法内建函数 利用 SSTI 读取文件Python 2Python 3 利用 SSTI 执行命令寻找内建函数 eval 执行命令寻找 os 模块执行命令寻找 popen 函数执行命令寻找 importlib 类执行命令寻找 linecache 函数执行命令寻找 subproce…...
最近的工作和生活
大家好,我是记得诚。 聊一聊最近的工作和生活。 不知不觉在管理岗位,快干一年了。技术管理还是比较纯粹,主要还是以解决问题为主,对自己的考验也更大了,要关注更广的技术,也要专注更深的技术细节。 技术…...
第六节:Word中对象的层次结构
《VBA之Word应用》(10178982),是我推出第八套教程,教程是专门讲解VBA在Word中的应用,围绕“面向对象编程”讲解,首先让大家认识Word中VBA的对象,以及对象的属性、方法,然后通过实例让…...
ARJ_DenseNet BMR模型训练
废话不多数,模型训练代码 densenet_arj_BMR.py : import timefrom tensorflow.keras.applications.xception import Xception from tensorflow.keras.applications.densenet import DenseNet169 from tensorflow.keras.preprocessing.image import Im…...
React之Hook
一、是什么 Hook 是 React 16.8 的新增特性。它可以让你在不编写 class 的情况下使用 state 以及其他的 React 特性 至于为什么引入hook,官方给出的动机是解决长时间使用和维护react过程中常遇到的问题,例如: 难以重用和共享组件中的与状态…...
OSG嵌入QT的简明总结2
正文 我之前在这篇博文《OSG嵌入QT的简明总结》中论述了OSG在QT中显示的可视化问题。其中提到官方提供的osgQt项目(地址:https://github.com/openscenegraph/osgQt )很久前已经更新了。但是我一直没有时间同步更新,最近重新尝试了…...
日常中msvcp71.dll丢失怎样修复?分享5个修复方法
在 Windows 系统中,msvcp71.dll 是一个非常重要的动态链接库文件,它承载了许多应用程序和游戏的运行。如果您的系统中丢失了这个文件,那么您可能会遇到无法打开程序、程序崩溃或出现错误提示等问题。本文将介绍 5 个快速修复 msvcp71.dll 丢失…...
【腾讯云TDSQL-C Serverless 产品体验】使用 Python向TDSQL-C添加读取数据实现词云图
关于TDSQL-C Serverless介绍 TDSQL-C 是腾讯云自主研发的新一代云原生关系型数据库。 它融合了传统数据库、云计算和新硬件技术的优势,100%兼容 MySQL,为用户提供具有极致弹性、高性能、高可用性、高可靠性和安全性的数据库服务。 TDSQL-C 实现了超过百万每秒的高吞吐量,支持…...
服务器感染了.360、.halo勒索病毒,如何确保数据文件完整恢复?
导言: 数据的安全性至关重要,但威胁不断进化,.360、.halo勒索病毒是其中的令人担忧的勒索软件。本文91数据恢复将深入介绍.360、.halo勒索病毒,包括其威胁本质、数据恢复方法和如何采取预防措施来保护您的数据。 如果受感染的数据…...
BAT028:批量将文件修改日期后缀更新为最新修改日期
引言:编写批处理程序,实现批量将文件修改日期后缀更新为最新修改日期。 一、新建Windows批处理文件 参考博客: CSDNhttps://mp.csdn.net/mp_blog/creation/editor/132137544 二、写入批处理代码 1.右键新建的批处理文件,点击【…...
Visual Studio C++ 的 头文件和源文件
在Visual Studio C中,头文件(Header Files)和源文件(Source Files)是两种不同的文件类型,用于组织和管理C代码。 头文件(Header Files): 后缀名为.h或.hpp的文件…...
Scrapy框架中的Middleware扩展与Scrapy-Redis分布式爬虫
在爬虫开发中,Scrapy框架是一个非常强大且灵活的选择。在本文中,我将与大家分享两个关键的主题:Scrapy框架中的Middleware扩展和Scrapy-Redis分布式爬虫。这些主题将帮助你更好地理解和应用Scrapy框架,并提升你的爬虫开发技能。 …...
[论文笔记]Sentence-BERT[v2]
引言 本文是SBERT(Sentence-BERT)论文1的笔记。SBERT主要用于解决BERT系列模型无法有效地得到句向量的问题。很久之前写过该篇论文的笔记,但不够详细,今天来重新回顾一下。 BERT系列模型基于交互式计算输入两个句子之间的相似度是非常低效的(但效果是很好的)。当然可以通过…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
