【LeetCode】 412. Fizz Buzz
题目链接


文章目录
- Python3 【O(n) O(1)】
- C++
- .emplace_back() 【C++ 11 之后】
Python3 【O(n) O(1)】
初始版本
class Solution:def fizzBuzz(self, n: int) -> List[str]:ans = []for i in range(1, n+1):if i % 5 == 0 and i % 3 == 0:ans.append("FizzBuzz")elif i % 3 == 0:ans.append("Fizz") elif i % 5 == 0:ans.append("Buzz")else:ans.append(str(i))return ans
第一种情况 就是两种情况同时满足,两个都输出

官方题解的 逻辑也可以
- 需要注意 顺序
class Solution:def fizzBuzz(self, n: int) -> List[str]:ans = []for i in range(1, n+1):# 拼接 输出的 字符串 ss = ""if i % 3 == 0:s += "Fizz"if i % 5 == 0:s += "Buzz"if s == "": # 既不是3的倍数,也不是5的倍数s = str(i) ans.append(s)return ans
C++
class Solution {
public:vector<string> fizzBuzz(int n) {vector<string> ans;for (int i = 1; i <= n; ++i){string s;if (i % 3 == 0){s += "Fizz";}if (i % 5 == 0){s += "Buzz";}if (s.size() == 0){s = to_string(i);}//ans.push_back(s);ans.emplace_back(s); // 比 push_back 快}return ans;}
};
.emplace_back() 【C++ 11 之后】
在 C++11 之后,vector 容器中添加了新的方法emplace_back() ,和 push_back() 一样的是都是在容器末尾添加一个新的元素进去,不同的是 emplace_back() 在效率上相比较于 push_back() 有了一定的提升。
emplace_back 将一个就地构造的元素添加到向量末尾。

相关文章:
【LeetCode】 412. Fizz Buzz
题目链接 文章目录 Python3 【O(n) O(1)】C.emplace_back() 【C 11 之后】 Python3 【O(n) O(1)】 初始版本 class Solution:def fizzBuzz(self, n: int) -> List[str]:ans []for i in range(1, n1):if i % 5 0 and i % 3 0:ans.append("FizzBuzz")elif i % …...
vector+算法sort与list+sort的效率比较,容易写错的地方原因探析
我写的代码: #include <iostream> using namespace std; #include <vector> #include <list> #include <algorithm> int main() {const int N 10000000;vector<int> v;list<int> l;for (int i 0; i < N; i){v.push_back(…...
iOS——Manager封装网络请求
在之前的项目里,我们都是把网络请求写在viewController的viewDidLoad,而实际中使用的时候并不能这么简单,对于不同的需要,我们需要有不同的网络请求。所以我们可以用单例模式创建一个全局的Manager类,用实例Manager来执…...
【javascript】内部引入与外部引入javascript
创建a.html 内部引入: 外部引入: 创建a.js 注意: 我这里的a.js和a.html是放在同一个目录下,如果a.js放在js的目录下,a.html 调用a.js的时候 <script src"/js/a.js"></script>...
掌握JavaScript的练习之道:十个手写函数让你信手拈来!
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
买卖股票的最佳时机 II[中等]
优质博文:IT-BLOG-CN 一、题目 给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得…...
前端开发调试技巧:如何在Component下选中当前插件并且查看当前插件信息
在react开发项目中,在Component下选中组件,然后在控制台输$r 按回车键即可输出该组件信息。例如 $r.props输出该组件的props参数。例子详情见如下截图...
你是否还迷茫要不要学习Linux?
近几年Linux这个词好像很流行,无论是现实工作中,还是在网络信息中均可以听到或者看到有关Linux相关的内容,可以说Linux无处不在。说到这,有人可能会问了,我对Linux比较感兴趣,但是没有接触过Linuxÿ…...
leetcode(1)链表
# 1. 定义一个链表节点 class ListNode:def __init__(self, val0, next_nodeNone):self.val valself.next_node next_node# 2. 定义一个 node头节点 class LinkedList:def __init__(self):self.head None# 3.链表查找元素 get(index): def get_node(self, index)…...
spring boot Rabbit高级教程
消息可靠性 生产者重试机制 首先第一种情况,就是生产者发送消息时,出现了网络故障,导致与MQ的连接中断。 为了解决这个问题,SpringAMQP提供的消息发送时的重试机制。即:当RabbitTemplate与MQ连接超时后,…...
FTP的魅力:构建高效的文件传输基础
1 ftp介绍 1.1 ftp服务器安装 dnf install vsftpd-3.0.3-31.el8.x86_64 -y # 安装ftp服务 systemctl enable --now vsftpd # 启动ftp服务 systemctl stop --now firewalld.service # 关闭防火墙,允许客户端访问anonymous_enableYES #启动匿名用户访问功能1.2 客户…...
70、window11+visual studio2019+共享内存进行数据传输
基本思想:服务端和客户端 写共享内存 #include <windows.h> #include <iostream> using namespace std;HANDLE g_EventRead; // 读信号灯 HANDLE g_EventWrite; // 写信号灯 // 定义共享数据class Writer { public:Writer(const int buf_size, const wchar_t…...
SSTI模板注入(flask) 学习总结
文章目录 Flask-jinja2 SSTI 一般利用姿势SSTI 中常用的魔术方法内建函数 利用 SSTI 读取文件Python 2Python 3 利用 SSTI 执行命令寻找内建函数 eval 执行命令寻找 os 模块执行命令寻找 popen 函数执行命令寻找 importlib 类执行命令寻找 linecache 函数执行命令寻找 subproce…...
最近的工作和生活
大家好,我是记得诚。 聊一聊最近的工作和生活。 不知不觉在管理岗位,快干一年了。技术管理还是比较纯粹,主要还是以解决问题为主,对自己的考验也更大了,要关注更广的技术,也要专注更深的技术细节。 技术…...
第六节:Word中对象的层次结构
《VBA之Word应用》(10178982),是我推出第八套教程,教程是专门讲解VBA在Word中的应用,围绕“面向对象编程”讲解,首先让大家认识Word中VBA的对象,以及对象的属性、方法,然后通过实例让…...
ARJ_DenseNet BMR模型训练
废话不多数,模型训练代码 densenet_arj_BMR.py : import timefrom tensorflow.keras.applications.xception import Xception from tensorflow.keras.applications.densenet import DenseNet169 from tensorflow.keras.preprocessing.image import Im…...
React之Hook
一、是什么 Hook 是 React 16.8 的新增特性。它可以让你在不编写 class 的情况下使用 state 以及其他的 React 特性 至于为什么引入hook,官方给出的动机是解决长时间使用和维护react过程中常遇到的问题,例如: 难以重用和共享组件中的与状态…...
OSG嵌入QT的简明总结2
正文 我之前在这篇博文《OSG嵌入QT的简明总结》中论述了OSG在QT中显示的可视化问题。其中提到官方提供的osgQt项目(地址:https://github.com/openscenegraph/osgQt )很久前已经更新了。但是我一直没有时间同步更新,最近重新尝试了…...
日常中msvcp71.dll丢失怎样修复?分享5个修复方法
在 Windows 系统中,msvcp71.dll 是一个非常重要的动态链接库文件,它承载了许多应用程序和游戏的运行。如果您的系统中丢失了这个文件,那么您可能会遇到无法打开程序、程序崩溃或出现错误提示等问题。本文将介绍 5 个快速修复 msvcp71.dll 丢失…...
【腾讯云TDSQL-C Serverless 产品体验】使用 Python向TDSQL-C添加读取数据实现词云图
关于TDSQL-C Serverless介绍 TDSQL-C 是腾讯云自主研发的新一代云原生关系型数据库。 它融合了传统数据库、云计算和新硬件技术的优势,100%兼容 MySQL,为用户提供具有极致弹性、高性能、高可用性、高可靠性和安全性的数据库服务。 TDSQL-C 实现了超过百万每秒的高吞吐量,支持…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
