当前位置: 首页 > news >正文

AM@麦克劳林公式逼近以及误差分析

abstract

  • 麦克劳林公式及其近似表示的应用
  • 误差估计和分析

Lagrange型泰勒公式的估计误差

  • 由Lagrange型余项泰勒公式可知,多项式 p n ( x ) p_n(x) pn(x)近似表达函数 f ( x ) f(x) f(x)时,其误差为 ∣ R n ( x ) ∣ |R_{n}(x)| Rn(x)
    • R n ( x ) R_{n}(x) Rn(x)= f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} (n+1)!f(n+1)(ξ)(xx0)n+1,( ξ \xi ξ x 0 x_0 x0 x x x之间)(R1)

误差估计式

  • 若对于某个固定的 n n n,当 x ∈ U ( x 0 ) x\in{U(x_0)} xU(x0)邻域时, ∣ f ( n + 1 ) ( x ) ∣ ⩽ M |f^{(n+1)}(x)|\leqslant{M} f(n+1)(x)M(函数 f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x)在邻域 U ( x 0 ) U(x_0) U(x0)内局部有界),则可以估计误差的上限(记为 R M R_{M} RM):
    • M M M不一定是常数,可能是函数 M ( x ) M(x) M(x)
      • 例如 f ( x ) = e x f(x)=e^{x} f(x)=ex,其 ∣ f ( n + 1 ) ( x ) ∣ |f^{(n+1)}(x)| f(n+1)(x)= ∣ e x ∣ ⩽ e ∣ x ∣ |e^{x}|\leqslant{e^{|x|}} exex
    • 进行不等式放大: ∣ R n ( x ) ∣ ⩽ M ( n + 1 ) ! ∣ x − x 0 ∣ n + 1 |R_n(x)|\leqslant{\frac{M}{(n+1)!}|x-x_0|^{n+1}} Rn(x)(n+1)!Mxx0n+1= R M R_{M} RM(0);
    • 该公式给出了估计误差的一个上限

麦克劳林(Maclaurin)公式

  • 在Peano型泰勒公式中,

    • f ( x ) f(x) f(x)= p n ( x ) + R n ( x ) p_n(x)+R_n(x) pn(x)+Rn(x)(1)
      • = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n \frac{1}{n!}f^{(n)}(x_0)(x-x_0)^{n} n!1f(n)(x0)(xx0)n+ R n ( x ) R_n(x) Rn(x)
      • = ∑ k = 0 n 1 k ! f ( k ) ( x 0 ) ( x − x 0 ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(x_0)(x-x_0)^{k} k=0nk!1f(k)(x0)(xx0)k+ R n ( x ) R_n(x) Rn(x)(2)
  • 若取 x 0 = 0 x_0=0 x0=0

    • 带有Peano余项的Taylor公式表示为

      • f ( x ) f(x) f(x)= ∑ k = 0 n 1 k ! f ( k ) ( 0 ) ( x ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(0)(x)^{k} k=0nk!1f(k)(0)(x)k+ o ( ( x ) n ) o((x)^{n}) o((x)n)
        • = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn+ o ( x n ) o(x^{n}) o(xn)(3)
      • 此时公式也称为:带有Peano余项的Maclaurin公式,
    • 带有Lagrange余项的Taylor公式

      • R n ( x ) ∣ x 0 = 0 R_{n}(x)|_{x_0=0} Rn(x)x0=0= f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(ξ)xn+1,( ξ \xi ξ x 0 x_0 x0 x x x之间)
      • 若令 ξ = θ x \xi=\theta{x} ξ=θx, ( θ ∈ ( 0 , 1 ) ) (\theta\in(0,1)) (θ(0,1)),则 R n ( x ) ∣ x 0 = 0 R_{n}(x)|_{x_0=0} Rn(x)x0=0= f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1, ( θ ∈ ( 0 , 1 ) ) (\theta\in(0,1)) (θ(0,1))(R2)
      • f ( x ) f(x) f(x)= ∑ k = 0 n 1 k ! f ( k ) ( 0 ) ( x ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(0)(x)^{k} k=0nk!1f(k)(0)(x)k+ f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1
        • f ( x ) f(x) f(x)= f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn+ f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1(4)

麦克劳林近似公式

  • Maclaurin多项式: p n ( x ) ∣ x 0 = 0 p_{n}(x)|_{x_0=0} pn(x)x0=0= ∑ k = 0 n 1 k ! f ( k ) ( 0 ) ( x ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(0)(x)^{k} k=0nk!1f(k)(0)(x)k= f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn
  • Maclaurin近似公式: f ( x ) ≈ p n ( x ) ∣ x 0 = 0 f(x)\approx{p_{n}(x)|_{x_0=0}} f(x)pn(x)x0=0
  • 此时,误差估计式写成 ∣ R n ( x ) ∣ ⩽ M ( n + 1 ) ! ∣ x ∣ n + 1 |R_{n}(x)|\leqslant{\frac{M}{(n+1)!}|x|^{n+1}} Rn(x)(n+1)!Mxn+1

小结

  • 被逼近函数=逼近函数+误差

  • 被逼近函数可以用逼近函数 p n ( x ) p_n(x) pn(x)来估计,该估计的误差可以用 R n ( x ) R_n(x) Rn(x)来估计

  • 从余项和误差估计式可以看出,对于给定的泰勒公式 f ( x ) = p n ( x ) + R n ( x ) f(x)=p_{n}(x)+R_{n}(x) f(x)=pn(x)+Rn(x)

    • 为了体现近似源 x 0 x_0 x0,可写成 f ( x , x 0 ) = p n ( x , x 0 ) + R n ( x , x 0 ) f(x,x_0)=p_{n}(x,x_0)+R_{n}(x,x_0) f(x,x0)=pn(x,x0)+Rn(x,x0),用该公式中的 p n ( x , x 0 ) p_n(x,x_0) pn(x,x0)来估计 f ( x ) f(x) f(x)的取值
    • x x x x 0 x_0 x0越远,( ∣ x − x 0 ∣ |x-x_0| xx0越大),则估计误差 ∣ R n ( x ) ∣ |R_n(x)| Rn(x)越大: ∣ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ∣ |\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}| (n+1)!f(n+1)(ξ)(xx0)n+1
    • 为了提高精度,可以提高 n n n的大小
      • 因为误差式中有一个分母 ( n + 1 ) ! (n+1)! (n+1)!阶乘的增长速度快于指数 ( x − x 0 ) n + 1 (x-x_0)^{n+1} (xx0)n+1(通过求极限可以证明,即使 x − x 0 x-x_0 xx0不变,只要使得, n → ∞ n\to{\infin} n时,就有 R M → 0 R_{M}\to{0} RM0,从而 ∣ R n ( x ) ∣ → 0 |R_n(x)|\to{0} Rn(x)0)
    • 泰勒公式 n n n阶逼近的方法和一般的逼近手段不同,例如一阶微分逼近 f ( x ) ≈ f ′ ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx{f'(x_0)+f'(x_0)(x-x_0)} f(x)f(x0)+f(x0)(xx0)需要靠 x → x 0 x\to{x_0} xx0来提高精度,而泰勒公式除了可通过 x → x 0 x\to{x_0} xx0提高精度,还可以选择提高逼近阶数 n n n来实现
  • 通过对一般的泰勒公式中的 x 0 x_0 x0取定为 0 0 0,得到Maclaurin公式,该公式形式上和计算上比一般形式的泰勒公式更加简单,而且同样可以通过提高逼近阶数 n n n来提高逼近精度

  • 只要阶数够高(存在足够高阶的导数),Maclaurin公式做到任意精度的逼近( n → ∞ n\to{\infin} n,时误差的极限为0)

逼近公式的截断应用

  • 方便起见,通常使用Maclaurin近似公式来作函数的近似表示和高精度估计,一般形式的Taylor公式比较少直接用来估计,Maclaurin公式简单
  • 通常 n n n不需要太大就有比较高的精度了,例如 n = 2 n=2 n=2

  • f ( x ) = e x f(x)=e^{x} f(x)=ex的带有Lagrange余项的 n n n阶Maclaurin公式

    • n f ( n ) ( x ) f^{(n)}(x) f(n)(x) f ( n ) ( 0 ) f^{(n)}(0) f(n)(0)
      0 e x e^{x} ex1
      1 e x e^{x} ex1
      2 e x e^{x} ex1
      ⋯ \cdots ⋯ \cdots ⋯ \cdots
      n n n e x e^{x} ex1
      n + 1 n+1 n+1 e x e^{x} ex f ( n + 1 ) ( θ x ) f^{(n+1)}(\theta{x}) f(n+1)(θx)= e θ x e^{\theta{x}} eθx
    • e x e^{x} ex= f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn+ f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1

      • = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n 1+x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^{n} 1+x+2!1x2++n!1xn+ e θ x ( n + 1 ) ! x n + 1 \frac{e^{\theta{x}}}{(n+1)!}x^{n+1} (n+1)!eθxxn+1, θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)(1)
    • 误差: ∣ R n ( x ) ∣ |R_{n}(x)| Rn(x)= ∣ e θ x ( n + 1 ) ! x n + 1 ∣ |\frac{e^{\theta{x}}}{(n+1)!}x^{n+1}| (n+1)!eθxxn+1< e ∣ x ∣ ( n + 1 ) ! ∣ x ∣ n + 1 \frac{e^{{|x|}}}{(n+1)!}|x|^{n+1} (n+1)!exxn+1

      • 例如估算 x = 1 x=1 x=1,即 f ( 1 ) f(1) f(1),由公式 e 1 ≈ 1 + 1 + 1 2 ! + ⋯ + 1 n ! e^{1}\approx 1+1+\frac{1}{2!}+\cdots+\frac{1}{n!} e11+1+2!1++n!1
      • 此时误差为 ∣ R n ∣ < e 1 ( n + 1 ) ! |R_n|<\frac{e^1}{(n+1)!} Rn<(n+1)!e1,也可以更加保守,进一步放大误差上界 3 ( n + 1 ) ! \frac{3}{(n+1)!} (n+1)!3,当
        • n = 10 n=10 n=10时,可以得 e ≈ 2.718282 e\approx{2.718282} e2.718282,且保证其误差不超过 1 0 − 6 10^{-6} 106

相关文章:

AM@麦克劳林公式逼近以及误差分析

abstract 麦克劳林公式及其近似表示的应用误差估计和分析 Lagrange型泰勒公式的估计误差 由Lagrange型余项泰勒公式可知,多项式 p n ( x ) p_n(x) pn​(x)近似表达函数 f ( x ) f(x) f(x)时,其误差为 ∣ R n ( x ) ∣ |R_{n}(x)| ∣Rn​(x)∣ R n ( x ) R_{n}(x) Rn​(x) f …...

gitlab 离线安装问题解决:NOKEY,signature check fail

1&#xff0c;rpm安装gitlab问题 test1:/opt # rpm -ivh gitlab-ce-16.0.3-ce.0.el7.x86_64.rpm --force warning: gitlab-ce-16.0.3-ce.0.el7.x86_64.rpm: Header V4 RSA/SHA1 Signature, key ID f27eab47: NOKEY error: [upel]: gitlab-ce NOKEY error: [upel]: gitlab-ce …...

uniapp使用uQRCode绘制二维码,下载到本地,调起微信扫一扫二维码核销

1.效果 2.在utils文件夹下创建uqrcode.js // uqrcode.js //--------------------------------------------------------------------- // github https://github.com/Sansnn/uQRCode //---------------------------------------------------------------------let uQRCode {…...

手写一个PrattParser基本运算解析器3: 基于Swift的PrattParser的项目概述

点击查看 基于Swift的PrattParser项目 PrattParser项目概述 前段时间一直想着手恶补 编译原理 的相关知识, 一开始打算直接读大学的 编译原理, 虽然内容丰富, 但是着实抽象难懂. 无意间看到B站的熊爷关于普拉特解析器相关内容, 感觉是一个非常好的切入点.所以就写了基于Swift版…...

三江学院“火焰杯”软件测试高校就业选拔赛颁奖仪式

11月25日下午&#xff0c;“火焰杯”软件测试开发选拔赛及三江-慧科卓越工程师班暑期编程能力训练营颁奖仪式在s楼会议室隆重举行。计算机科学与工程学院院长刘亚军、副院长叶传标、曹阳、吴德、院党总支副书记王兰英、系主任杨少雄、慧科企业代表尹沁伊人、项目负责人王旭出席…...

面试题-消息中间件篇-主流的消息中间件

消息中间件篇 第一章 主流的消息中间件对比 1、主流的消息中间件有 Kafka、RabbitMQ、ActiveMQ 等。 Kafka&#xff1a; Kafka 是一种高吞吐量、分布式、可扩展的发布/订阅消息系统&#xff0c;主要用于大数据处理和分析。Kafka 采用消息日志的方式来存储消息&#xff0c;可以…...

PyQt学习笔记-获取Hash值的小工具

目录 一、概述1.1 版本信息&#xff1a;1.2 基本信息&#xff1a;1.2.1 软件支持的内容&#xff1a;1.2.2 支持的编码格式 1.3 软件界面图 二、代码实现2.1 View2.2 Controller2.3 Model 三、测试示例 一、概述 本工具居于hashlibPyQtQFileDialog写的小工具&#xff0c;主要是…...

【(数据结构)— 双向链表的实现】

&#xff08;数据结构&#xff09;— 双向链表的实现 一.双向链表的结构二. 双向链表的实现2.1 头文件 ——双向链表的创建及功能函数的定义2.2 源文件 ——双向链表的功能函数的实现2.3 源文件 ——双向链表功能的测试2.4 双向链表各项功能测试运行展示2.4.1 双向链表的初始化…...

酷克数据发布HD-SQL-LLaMA模型,开启数据分析“人人可及”新时代

随着行业数字化进入深水区&#xff0c;企业的关注点正在不断从“数字”价值转向“数智”价值。然而&#xff0c;传统数据分析的操作门槛与时间成本成为了掣肘数据价值释放的阻力。常规的数据分析流程复杂冗长&#xff0c;需要数据库管理员设计数据模型&#xff0c;数据工程师进…...

FL Studio21最新中文破解进阶高级完整版安装下载教程

目前水果软件最版本是FL Studio21&#xff0c;它让你的计算机就像是全功能的录音室&#xff0c;大混音盘&#xff0c;非常先进的制作工具&#xff0c;让你的音乐突破想象力的限制。喜欢音乐制作的小伙伴千万不要错过这个功能强大&#xff0c;安装便捷的音乐软件哦&#xff01;如…...

MDN--Web性能

CSS 动画与 JavaScript 动画 动画的实现可以有很多种方式&#xff0c;比如 CSS transition 和 animation 或者基于 JavaScript 的动画(使用 requestAnimationFrame()) CSS 过渡和动画 CSS transiton :创建当前样式与结束状态样式之间的动画。尽管一个元素处于过渡状态中&…...

Vue3.js:自定义组件 v-model

Vue3的自定义v-model和vue2稍有不同 文档 https://cn.vuejs.org/guide/components/v-model.html 目录 原生组件自定义组件CustomInput实现代码1CustomInput实现代码2 v-model 的参数 原生组件 <input v-model"searchText" />等价于 <input:value"s…...

AI虚拟主播开发实战(附源码)

人工智能 文章目录 人工智能前言 前言 https://blog.csdn.net/icemanyandy/article/details/124035967...

innoDB如何解决幻读

Mysql的事务隔离级别 Mysql 有四种事务隔离级别&#xff0c;这四种隔离级别代表当存在多个事务并发冲突时&#xff0c;可能出现的脏读、不可重复读、幻读的问题。其中 InnoDB 在 RR 的隔离级别下&#xff0c;解决了幻读的问题 事务隔离级别脏读不可重复读幻读未提交读&#xff…...

Git - 导出(archive)、忽略(gitignore)、隐藏(Stash)、合并冲突(merge)的解决方法

概述 本次集中总结了Git4个常规操作&#xff0c;导出(archive)、忽略(gitignore)、隐藏(Stash)、合并冲突(merge)的解决方法&#xff0c;希望帮助到正在辛苦寻找的你。 .gitignore忽略文件 之前开发和部署服务比较仓促&#xff0c;所以有很多图片文件一起加载到服务中&#…...

【Javascript】‘var‘ is used instead of ‘let‘ or ‘const‘

解决&#xff1a; 设置完之后,var 就不会再出现黄色波浪线警告...

金融统计学方法:神经网络

目录 1.神经网络 2.深度神经网络 3.案例分析 1.神经网络 神经网络是模仿人脑神经元工作原理而设计的一种算法模型。在一个基本的神经网络中&#xff0c;存在多个“神经元”或称为“节点”&#xff0c;这些节点被组织成多个层次。每个节点都接收前一层的输入&#xff0c;进行…...

任何人不知道这款超实用的配音软件,我都会伤心的OK?

看完一段精彩的视频&#xff0c;令人陶醉的原因之一就是配音&#xff0c;有的充满感情&#xff0c;有的字正腔圆&#xff0c;相信很多人都不知道这样的声音是怎么配出来的&#xff1f;今天&#xff0c;小编就来给大家分享一款超实用的配音软件&#xff0c;不仅操作简单&#xf…...

Linux查看日志文件的常用命令

1、查看文件最后1000行内容 tail -n 1000 filename 2、实时查看文件最后1000行内容&#xff0c;动态刷新 tailf -n 1000 filename tail -f -n 1000 filename 3、按照关键字搜索日志 cat filename | grep 关键字 4、按照关键字搜索并包含前(后)多少行 【&#xff08;A前B后C前…...

AcWing算法分享系列——二分图

这是AcWing算法分享系列的第一篇文章,我们先从图论的知识下手(因为我觉得图论的只是好理解些)。 这次我们主要讲的就是二分图,二分图这次我们主要讲的就是最基础的两个板块: 二分图的判定(染色法)二分图的完美匹配(匈牙利算法)我们这一篇文章先从二分图的概念开始入手…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例&#xff1a; 某医药分销企业&#xff0c;主要经营各类药品的批发与零售。由于药品的特殊性&#xff0c;效期管理至关重要&#xff0c;但该企业一直面临效期问题的困扰。在未使用WMS系统之前&#xff0c;其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...