当前位置: 首页 > news >正文

杭电oj--数列有序

有n(n<=100)个整数,已经按照从小到大顺序排列好,现在另外给一个整数x,请将该数插入到序列中,并使新的序列仍然有序。

输入数据包含多个测试实例,每组数据由两行组成,第一行是n和m,第二行是已经有序的n个数的数列。n和m同时为0标示输入数据的结束,本行不做处理。

对于每个测试实例,输出插入新的元素后的数列。

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc=new Scanner(System.in);while(sc.hasNext()){int n=sc.nextInt();//数组元素个数int m=sc.nextInt();//插入的元素if(n==0&&m==0) return;int[] arr=new int[n+1];for (int i = 0; i <n ; i++) {arr[i]=sc.nextInt();}for (int i = 0; i <n ; i++) {if(m<arr[i]){for (int j = n; j >i ; j--) {arr[j]=arr[j-1];}arr[i]=m;i=n;}}if(arr[n]==0) arr[n]=m;for (int i = 0; i <n ; i++) {System.out.print(arr[i]+" ");}System.out.println(arr[n]);}}
}

相关文章:

杭电oj--数列有序

有n(n<100)个整数&#xff0c;已经按照从小到大顺序排列好&#xff0c;现在另外给一个整数x&#xff0c;请将该数插入到序列中&#xff0c;并使新的序列仍然有序。 输入数据包含多个测试实例&#xff0c;每组数据由两行组成&#xff0c;第一行是n和m&#xff0c;第二行是已…...

PHPEXCEL解决行数超过65536不显示问题

起因自然是导出数据到excel文件时&#xff0c;数据缺少现象。 百度讲解是将xls文件另存为xlsx文件。 除了这里的原因&#xff0c;还有一点是phpExcel存在两个写入类PHPExcel_Writer_Excel2007和PHPExcel_Writer_Excel5&#xff0c;而只有PHPExcel_Writer_Excel2007支持超过65…...

新媒体时代如何做好新型的网络口碑营销?

从人类开始交换商品的时代开始&#xff0c;口碑营销就已经存在&#xff0c;是靠口耳传播的营销方式。小马识途认为进入当今移动互联网时代&#xff0c;口碑营销又有了新的发展&#xff0c;网络口碑营销推广开始普及。营销人员将传统口碑营销与移动互联网营销相结合&#xff0c;…...

MySQL中InnoDB插入缓冲区(Insert Buffer)

一、插入缓冲区的基本原理 插入缓冲区&#xff08;Insert Buffer&#xff0c;也称作 Change Buffer&#xff09;&#xff0c;是InnoDB存储引擎的一种内部机制&#xff0c;它允许系统将对非聚集索引页的写操作&#xff08;例如插入、删除和更新&#xff09;暂时缓存在内存中&am…...

VUE前端判断是电脑端还是移动端

背景需求 ruoyi框架&#xff0c;前后端分离。现在要在用户访问的时候根据不同的设备跳转到不同的登录页面。 教程 router/index.js 修改src/router/index.js&#xff0c;在这里增加自己的要跳转的页面 permission.js 在白名单中添加自己的登录页面 增加以下识别的代码 le…...

OpenGL —— 2.8、漫游之摄像机飞行移动(附源码,glfw+glad)

源码效果 C源码 纹理图片 需下载stb_image.h这个解码图片的库&#xff0c;该库只有一个头文件。 具体代码&#xff1a; vertexShader.glsl #version 330 corelayout(location 0) in vec3 aPos; layout(location 1) in vec2 aUV;out vec2 outUV;uniform mat4 _modelMatrix; …...

AM@麦克劳林公式逼近以及误差分析

abstract 麦克劳林公式及其近似表示的应用误差估计和分析 Lagrange型泰勒公式的估计误差 由Lagrange型余项泰勒公式可知,多项式 p n ( x ) p_n(x) pn​(x)近似表达函数 f ( x ) f(x) f(x)时,其误差为 ∣ R n ( x ) ∣ |R_{n}(x)| ∣Rn​(x)∣ R n ( x ) R_{n}(x) Rn​(x) f …...

gitlab 离线安装问题解决:NOKEY,signature check fail

1&#xff0c;rpm安装gitlab问题 test1:/opt # rpm -ivh gitlab-ce-16.0.3-ce.0.el7.x86_64.rpm --force warning: gitlab-ce-16.0.3-ce.0.el7.x86_64.rpm: Header V4 RSA/SHA1 Signature, key ID f27eab47: NOKEY error: [upel]: gitlab-ce NOKEY error: [upel]: gitlab-ce …...

uniapp使用uQRCode绘制二维码,下载到本地,调起微信扫一扫二维码核销

1.效果 2.在utils文件夹下创建uqrcode.js // uqrcode.js //--------------------------------------------------------------------- // github https://github.com/Sansnn/uQRCode //---------------------------------------------------------------------let uQRCode {…...

手写一个PrattParser基本运算解析器3: 基于Swift的PrattParser的项目概述

点击查看 基于Swift的PrattParser项目 PrattParser项目概述 前段时间一直想着手恶补 编译原理 的相关知识, 一开始打算直接读大学的 编译原理, 虽然内容丰富, 但是着实抽象难懂. 无意间看到B站的熊爷关于普拉特解析器相关内容, 感觉是一个非常好的切入点.所以就写了基于Swift版…...

三江学院“火焰杯”软件测试高校就业选拔赛颁奖仪式

11月25日下午&#xff0c;“火焰杯”软件测试开发选拔赛及三江-慧科卓越工程师班暑期编程能力训练营颁奖仪式在s楼会议室隆重举行。计算机科学与工程学院院长刘亚军、副院长叶传标、曹阳、吴德、院党总支副书记王兰英、系主任杨少雄、慧科企业代表尹沁伊人、项目负责人王旭出席…...

面试题-消息中间件篇-主流的消息中间件

消息中间件篇 第一章 主流的消息中间件对比 1、主流的消息中间件有 Kafka、RabbitMQ、ActiveMQ 等。 Kafka&#xff1a; Kafka 是一种高吞吐量、分布式、可扩展的发布/订阅消息系统&#xff0c;主要用于大数据处理和分析。Kafka 采用消息日志的方式来存储消息&#xff0c;可以…...

PyQt学习笔记-获取Hash值的小工具

目录 一、概述1.1 版本信息&#xff1a;1.2 基本信息&#xff1a;1.2.1 软件支持的内容&#xff1a;1.2.2 支持的编码格式 1.3 软件界面图 二、代码实现2.1 View2.2 Controller2.3 Model 三、测试示例 一、概述 本工具居于hashlibPyQtQFileDialog写的小工具&#xff0c;主要是…...

【(数据结构)— 双向链表的实现】

&#xff08;数据结构&#xff09;— 双向链表的实现 一.双向链表的结构二. 双向链表的实现2.1 头文件 ——双向链表的创建及功能函数的定义2.2 源文件 ——双向链表的功能函数的实现2.3 源文件 ——双向链表功能的测试2.4 双向链表各项功能测试运行展示2.4.1 双向链表的初始化…...

酷克数据发布HD-SQL-LLaMA模型,开启数据分析“人人可及”新时代

随着行业数字化进入深水区&#xff0c;企业的关注点正在不断从“数字”价值转向“数智”价值。然而&#xff0c;传统数据分析的操作门槛与时间成本成为了掣肘数据价值释放的阻力。常规的数据分析流程复杂冗长&#xff0c;需要数据库管理员设计数据模型&#xff0c;数据工程师进…...

FL Studio21最新中文破解进阶高级完整版安装下载教程

目前水果软件最版本是FL Studio21&#xff0c;它让你的计算机就像是全功能的录音室&#xff0c;大混音盘&#xff0c;非常先进的制作工具&#xff0c;让你的音乐突破想象力的限制。喜欢音乐制作的小伙伴千万不要错过这个功能强大&#xff0c;安装便捷的音乐软件哦&#xff01;如…...

MDN--Web性能

CSS 动画与 JavaScript 动画 动画的实现可以有很多种方式&#xff0c;比如 CSS transition 和 animation 或者基于 JavaScript 的动画(使用 requestAnimationFrame()) CSS 过渡和动画 CSS transiton :创建当前样式与结束状态样式之间的动画。尽管一个元素处于过渡状态中&…...

Vue3.js:自定义组件 v-model

Vue3的自定义v-model和vue2稍有不同 文档 https://cn.vuejs.org/guide/components/v-model.html 目录 原生组件自定义组件CustomInput实现代码1CustomInput实现代码2 v-model 的参数 原生组件 <input v-model"searchText" />等价于 <input:value"s…...

AI虚拟主播开发实战(附源码)

人工智能 文章目录 人工智能前言 前言 https://blog.csdn.net/icemanyandy/article/details/124035967...

innoDB如何解决幻读

Mysql的事务隔离级别 Mysql 有四种事务隔离级别&#xff0c;这四种隔离级别代表当存在多个事务并发冲突时&#xff0c;可能出现的脏读、不可重复读、幻读的问题。其中 InnoDB 在 RR 的隔离级别下&#xff0c;解决了幻读的问题 事务隔离级别脏读不可重复读幻读未提交读&#xff…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...