非科班,补基础
大家好,我是大彬~
今天跟大家分享知识星球小伙伴关于【非科班转码如何补基础】的提问。
往期星球提问整理:
读博?找工作?
性格测试真的很重要
想找一份实习工作,需要准备什么
球友提问:
大彬大佬,想问下非科班要补哪些基础? 求推荐视频,国内国外都行。
大彬的回答:
你好,我也是非科班转码的,Java方向,不知道你打算想往哪个方向发展。不过没关系,无论哪个方向,计算机基础都是相通的,下面分享一下我的经验:
- 数据结构:程序员可以不关注硬件,软件部分就是代码的逻辑实现,其中数据结构是基础,推荐橘黄色的算法书,想进中大厂就刷 leetcode ;这部分我觉得熟悉常见数据结构,了解常见算法就够了。
- 操作系统:推荐电子科技大学的蒲晓蓉老师的操作系统课程,看完觉得意犹未尽再去翻翻现代操作系统或者 csapp 吧,这部分主要看下进程、内存、文件系统。
- 计算机网络:推荐自顶向下,重点看两章就够了,应用层和传输层,更下层的说实话用不到。这里工作用到的更多的是 http,看下图解 http 之类的,有需要的可以看下图解密码学。
- 数据库:推荐伯克利的 CS168 课程。国内的推荐中国人民大学王珊老师的《数据库系统概论》
- 编译原理:不推荐太早看,代码写多了再来看,前期直接跳过。如果你是前端程序员,至少接触过 babel 这一类工具,了解过原理之后再来学习,这门课太早接触我觉得真的没用,晦涩难懂
- 最后补充下个人理解:这个阶段最重要的不是深入细节,熟悉原理这一类的,看到不懂的部分直接跳过就行了,先大概过一遍建立计算机的一些基本思想和概念,比如分层和抽象、时间和空间、接口和实现、分治等等等等,先悟到这一层,再回头看书能快很多,接下来再去深入一些感兴趣的细节部分,我觉得就差不多了
最后给大家分享200多本计算机经典书籍PDF电子书,包括C语言、C++、Java、Python、前端、数据库、操作系统、计算机网络、数据结构和算法、机器学习、编程人生等,感兴趣的小伙伴可以自取:


https://mp.weixin.qq.com/s?__biz=Mzg2OTY1NzY0MQ==&mid=2247486208&idx=1&sn=dbeedf47c50b1be67b2ef31a901b8b56&chksm=ce98f646f9ef7f506a1f7d72fc9384ba1b518072b44d157f657a8d5495a1c78c3e5de0b41efd&token=1652861108&lang=zh_CN#rd
相关文章:
非科班,补基础
大家好,我是大彬~ 今天跟大家分享知识星球小伙伴关于【非科班转码如何补基础】的提问。 往期星球提问整理: 读博?找工作? 性格测试真的很重要 想找一份实习工作,需要准备什么 球友提问: 大彬大佬…...
安全性与合规性:IT运维的双重守护
在当今数字化时代,信息技术(IT)已深入渗透到企业的各个层面。随着数据和技术的不断发展,IT运维安全性和合规性逐渐成为了企业运营的两大核心要素。它们不仅保障了企业数据的安全,更维护了公司的声誉和客户信任。本文将…...
session 反序列化
原理详解 ctfshow web 263 ctfshow 新手杯 剪刀石头布 这里我们可以发现服务器使用的处理器为php_serialize,与当前页面处理器不同,在反序列化的时候会造成一些问题。同时cleanup配置没开,关闭了session自动清理,所以我们不需要…...
PostgreSQL中实现数学中的组合问题
记得在学《数值分析》这门课程时,其中有排列组合的相关计算。最近没有想到,自己居然在编程上需要了这个问题,需要在数据库的一张表中,找出任意n条记录的组合,判断组合后的图形是什么,也就是组合问题。从网上搜索的相关资料,发现很多是在Java或者python代码实现的。因为数…...
编译和连接
前言:哈喽小伙伴们,从我们开始学习C语言到实现如今的成果,可以说我们对C语言的掌握已经算是精通级别了,但是我们只学习了怎么写代码,却没怎么了解过代码的背后是怎么工作的。 那么今天这篇文章我们一起来学习C语言的最…...
常见分布整理
概率论 - 常见分布(及其分布表) 常见分布的期望和方差 离散型分布 两点分布 有2种结果,实验只做1次 X~b(1,p)则有 P(X k) pk (1-p)1-k,k 0, 1 数学期望:E(X) p 方差:D(X)p(1-p) 二项分布 P(A) p࿰…...
ubuntu终端命令行下如何使用NetworkManager(netplan)来配置wifi网络
最近在给家里折腾一个文件共享服务器给家里的小米摄像头保存监控视频用。树莓派太贵了,找来找去发现香橙派orangepi zero3 是最低成本的替代解决方案(网络足够快,CPU的IO能力足够强),香橙派orangepi zero3的操作系统是…...
GO学习之 goroutine的调度原理
GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…...
CUDA学习笔记5——CUDA程序错误检测
CUDA程序错误检测 所有CUDA的API函数都有一个类型为cudaError_t的返回值,代表了一种错误信息;只有返回cudaSuccess时,才是成功调用。 cudaGetLastError()用来检测核函数的执行是否出错cudaGetErrorString()输出错误信息 #include <stdi…...
虹科 | 解决方案 | 机械免拆压力测试方案
对于发动机的气门卡滞或气门开闭时刻错误、活塞环磨损、喷油嘴泄漏/堵塞等故障,往往需要解体发动机或拆卸部件才能发现;而对于某些轻微的故障,即使解体了发动机后也经常难于肉眼判别 虹科Pico提供的WPS500压力测试方案,可以动态测…...
Python数据挖掘实用案例——自动售货机销售数据分析与应用
🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,目前学习C/C、算法、Python、Java等方向,一个正在慢慢前行的普通人。 🏀系列专栏:陈童学的日记 💡其他专栏:CSTL&…...
深度学习技巧应用29-软件设计模式与神经网络巧妙结合,如何快速记忆软件设计模式
大家好,我是微学AI,今天给大家介绍一下软件设计模式与神经网络巧妙结合,如何快速记忆软件设计模式。我们知道软件设计模式有23种,考试的时候经常会考到,但是这么种里面我们如何取判断它呢,如何去记忆它呢&a…...
中文编程开发语言工具应用案例:ps5体验馆计时收费管理系统软件
中文编程开发语言工具应用案例:ps5体验馆计时收费管理系统软件 软件部分功能: 1、计时计费功能:只需点开始计时即可,时间直观显示 2、商品管理功能:可以管理饮料等商品 3、会员管理功能:支持只用手机号作…...
绘制核密度估计图
简介 核密度估计图(Kernel Density Estimation,KDE)是一种用于估计数据分布的非参数方法,通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数(PDF)来显示数据的分布特征,…...
基于深度学习网络的蔬菜水果种类识别算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1数据集准备 4.2构建深度学习模型 4.3模型训练 4.4模型评估 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; wa…...
UE4 距离场
在项目设置的渲染模块可打开距离场 把该节点连上,该节点的意思是,距离表面越近,材质显示值为0 不接近表面时: 接近表面时 可勾选该值即可看到距离场具体效果: 未接触表面时: 接触表面时: 产生…...
【SA8295P 源码分析 (四)】26 - QNX Ethernet MAC 驱动 之 emac_rx_thread_handler 数据接收线程 源码分析
【SA8295P 源码分析】26 - QNX Ethernet MAC 驱动 之 emac_rx_thread_handler 数据接收线程 源码分析 一、emac_rx_thread_handler():通过POLL 轮询方式获取数据二、emac_rx_poll_mq():调用 pdata->clean_rx() 来处理消息三、emac_configure_rx_fun_ptr():配置 pdata->…...
VR全景广告:让消费者体验沉浸式交互,让营销更有趣
好的产品都是需要广告宣传的,随着科技的不断发展,市面上的广告也和多年前的传统广告不同,通过VR技术,可以让广告的观赏性以及科技感更加强烈,并且相比于视频广告,成本也更低。 在广告营销中,关键…...
论文阅读 | RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow ECCV2020光流任务best paper 论文地址:【here】 代码地址:【here】 介绍 光流是对两张相邻图像中的逐像素运动的一种估计。目前碰到的一些困难包括:物体的快速运动ÿ…...
神经网络的发展历史
神经网络的发展历史可以追溯到上世纪的数学理论和生物学研究。以下是神经网络发展史的详细概述: 早期的神经元模型: 1943年,Warren McCulloch和Walter Pitts提出了一种神经元模型,被称为MCP神经元模型,它模拟了生物神经…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
