AFL安全漏洞挖掘
安全之安全(security²)博客目录导读
ATF(TF-A)/OPTEE之FUZZ安全漏洞挖掘汇总
目录
一、AFL简介
二、AFL的安装
三、代码示例及种子语料库
四、AFL插桩编译
五、AFL运行及测试
六、AFL结果分析
一、AFL简介
模糊测试(Fuzzing)技术作为漏洞挖掘最有效的手段之一,近年来一直是众多安全研究人员发现漏洞的首选技术。AFL、LibFuzzer、honggfuzz等操作简单友好的工具相继出现,也极大地降低了模糊测试的门槛。
AFL(American Fuzzy Lop)是由安全研究员Michał Zalewski(@lcamtuf)开发的一款基于覆盖引导(Coverage-guided)的模糊测试工具,它通过记录输入样本的代码覆盖率,从而调整输入样本以提高覆盖率,增加发现漏洞的概率。其工作流程大致如下:
①从源码编译程序时进行插桩,以记录代码覆盖率(Code Coverage);
②选择一些输入文件,作为初始测试集加入输入队列(queue);
③将队列中的文件按一定的策略进行“突变”;
④如果经过变异文件更新了覆盖范围,则将其保留添加到队列中;
⑤上述过程会一直循环进行,期间触发了crash的文件会被记录下来。
二、AFL的安装
下载AFL源码(https://github.com/google/AFL/),解压后,编译安装。
make
sudo make install
安装成功
安装目录
三、代码示例及种子语料库
首先创建一个简单的vulnerable.c
源文件,其功能无外乎接受一行命令行输入(一个整数、一个字符、再一个整数),然后根据中间这个字符当作运算符,输出四则运算结果。可以看见,这个被测程序的内容和普通的用户交互程序一模一样,看不出来任何不同,就是以stdin/stdout
作为交互的输入输出,以main
函数作为执行入口。
作为模糊测试,AFL需要提供初始的种子输入。
但实际上,你完全可以提供任何无意义的输入作为种子,模糊测试也一般能达到效果,只不过效率会低一些而已,是否提供有意义种子?提供多少?无外乎在种子获取难度和测试的效率要求之间进行权衡而已。
四、AFL插桩编译
编译过程和普通gcc
编译也是一样,除了使用的命令需要带上afl-
前缀,因此
afl-gcc -g -o vulnerable vulnerable.c
五、AFL运行及测试
执行命令,
afl-fuzz -i testcases/ -o outputs -- ./vulnerable |
但是不出意外命令会报错,
[-] Hmm, your system is configured to send core dump notifications to anexternal utility. This will cause issues: there will be an extended delaybetween stumbling upon a crash and having this information relayed to thefuzzer via the standard waitpid() API.To avoid having crashes misinterpreted as timeouts, please log in as rootand temporarily modify /proc/sys/kernel/core_pattern, like so:echo core >/proc/sys/kernel/core_pattern[-] PROGRAM ABORT : Pipe at the beginning of 'core_pattern'Location : check_crash_handling(), afl-fuzz.c:7275
以及
[-] Whoops, your system uses on-demand CPU frequency scaling, adjustedbetween 781 and 4003 MHz. Unfortunately, the scaling algorithm in thekernel is imperfect and can miss the short-lived processes spawned byafl-fuzz. To keep things moving, run these commands as root:cd /sys/devices/system/cpuecho performance | tee cpu*/cpufreq/scaling_governorYou can later go back to the original state by replacing 'performance' with'ondemand'. If you don't want to change the settings, set AFL_SKIP_CPUFREQto make afl-fuzz skip this check - but expect some performance drop.[-] PROGRAM ABORT : Suboptimal CPU scaling governorLocation : check_cpu_governor(), afl-fuzz.c:7337
具体原因上述信息已经提到了,大致就是AFL测试时用到功能需要还没有开启,因此,切换到root用户执行上面报错中给出的命令即可。不过因为上述命令中修改的都是/proc
和/sys
目录下的文件,二者Linux内核映射出来的逻辑文件,并非实际的磁盘文件,重启之后所有修改都会丢失,避免麻烦还是将这几个语句保存成为脚本有利于重复执行。
root用户切换
sudo su
echo core >/proc/sys/kernel/core_pattern
cd /sys/devices/system/cpu
echo performance | tee cpu*/cpufreq/scaling_governor
再次执行命令,
afl-gcc -g -o vulnerable vulnerable.c
可以正常运行,输出一段信息后呈现如下界面,表示fuzz已经开始了,可以在该界面中查看运行时间、崩溃数量等信息。
ctrl-C结束fuzz,可以看到当前目录下已经多出了outputs
目录,这是本次模糊测试的结果。
六、AFL结果分析
引起崩溃的测试样例会位于outputs/crashes
文件夹下,文件名大致形如id:000000,sig:08,src:000002,op:flip1,pos:3
,本次测试中,获得的崩溃样例的内容为:
其中包含10/0三个可打印字符和一个换行符。并未出乎意料,就是这种输入会导致程序中发生除零意外。
crashes:导致目标接收致命signal而崩溃的独特测试用例queue:存放所有具有独特执行路径的测试用例。AFL输出文件:
crashes/README.txt:保存了目标执行这些crashes文件的命令行参数。
hangs:导致目标超时的独特测试用例。
fuzzer_stats:afl-fuzz的运行状态。
plot_data:用于afl-plot绘图。
afl-plot outputs plots
参考:GitHub - google/AFL: american fuzzy lop - a security-oriented fuzzer
相关文章:

AFL安全漏洞挖掘
安全之安全(security)博客目录导读 ATF(TF-A)/OPTEE之FUZZ安全漏洞挖掘汇总 目录 一、AFL简介 二、AFL的安装 三、代码示例及种子语料库 四、AFL插桩编译 五、AFL运行及测试 六、AFL结果分析 一、AFL简介 模糊测试(Fuzzing)技术作为漏洞挖掘最有…...
ES6 let const var和解构赋值
1.let/const和var的区别 1.变量提升:var会发生变量提升,let和const不存在变量提升 2.暂时性死区:变量声明之前变量不可用称为暂时性死区。var不存在,let和const存在暂时性死区 3.typeof 不再是百分百不会报错:let声…...

03、MySQL-------数据库中间件MyCat实现读写分离
目录 八、数据库中间件MyCat实现读写分离1、克隆:2、配置分析:1、schema.xml2、启动mycat:3、关闭防火墙:4、代码测试:测试写入:测试读:强制读Master 八、数据库中间件MyCat实现读写分离 作用&…...

虹科活动 | 探索全新AR应用时代,虹科AR VIP研讨会广州场回顾!
文章来源:虹科数字化AR 阅读原文:https://mp.weixin.qq.com/s/7tmYR42Tw5XLn70fm8Nnew 主题演讲 本次研讨会,虹科特邀 “工业AR鼻祖” 美国Vuzix公司的首席应用工程师郑慎方先生进行主题演讲,并邀请到了各界的专业人士和企业代表参…...

非科班,补基础
大家好,我是大彬~ 今天跟大家分享知识星球小伙伴关于【非科班转码如何补基础】的提问。 往期星球提问整理: 读博?找工作? 性格测试真的很重要 想找一份实习工作,需要准备什么 球友提问: 大彬大佬…...
安全性与合规性:IT运维的双重守护
在当今数字化时代,信息技术(IT)已深入渗透到企业的各个层面。随着数据和技术的不断发展,IT运维安全性和合规性逐渐成为了企业运营的两大核心要素。它们不仅保障了企业数据的安全,更维护了公司的声誉和客户信任。本文将…...

session 反序列化
原理详解 ctfshow web 263 ctfshow 新手杯 剪刀石头布 这里我们可以发现服务器使用的处理器为php_serialize,与当前页面处理器不同,在反序列化的时候会造成一些问题。同时cleanup配置没开,关闭了session自动清理,所以我们不需要…...
PostgreSQL中实现数学中的组合问题
记得在学《数值分析》这门课程时,其中有排列组合的相关计算。最近没有想到,自己居然在编程上需要了这个问题,需要在数据库的一张表中,找出任意n条记录的组合,判断组合后的图形是什么,也就是组合问题。从网上搜索的相关资料,发现很多是在Java或者python代码实现的。因为数…...

编译和连接
前言:哈喽小伙伴们,从我们开始学习C语言到实现如今的成果,可以说我们对C语言的掌握已经算是精通级别了,但是我们只学习了怎么写代码,却没怎么了解过代码的背后是怎么工作的。 那么今天这篇文章我们一起来学习C语言的最…...

常见分布整理
概率论 - 常见分布(及其分布表) 常见分布的期望和方差 离散型分布 两点分布 有2种结果,实验只做1次 X~b(1,p)则有 P(X k) pk (1-p)1-k,k 0, 1 数学期望:E(X) p 方差:D(X)p(1-p) 二项分布 P(A) p࿰…...

ubuntu终端命令行下如何使用NetworkManager(netplan)来配置wifi网络
最近在给家里折腾一个文件共享服务器给家里的小米摄像头保存监控视频用。树莓派太贵了,找来找去发现香橙派orangepi zero3 是最低成本的替代解决方案(网络足够快,CPU的IO能力足够强),香橙派orangepi zero3的操作系统是…...

GO学习之 goroutine的调度原理
GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…...

CUDA学习笔记5——CUDA程序错误检测
CUDA程序错误检测 所有CUDA的API函数都有一个类型为cudaError_t的返回值,代表了一种错误信息;只有返回cudaSuccess时,才是成功调用。 cudaGetLastError()用来检测核函数的执行是否出错cudaGetErrorString()输出错误信息 #include <stdi…...

虹科 | 解决方案 | 机械免拆压力测试方案
对于发动机的气门卡滞或气门开闭时刻错误、活塞环磨损、喷油嘴泄漏/堵塞等故障,往往需要解体发动机或拆卸部件才能发现;而对于某些轻微的故障,即使解体了发动机后也经常难于肉眼判别 虹科Pico提供的WPS500压力测试方案,可以动态测…...

Python数据挖掘实用案例——自动售货机销售数据分析与应用
🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,目前学习C/C、算法、Python、Java等方向,一个正在慢慢前行的普通人。 🏀系列专栏:陈童学的日记 💡其他专栏:CSTL&…...

深度学习技巧应用29-软件设计模式与神经网络巧妙结合,如何快速记忆软件设计模式
大家好,我是微学AI,今天给大家介绍一下软件设计模式与神经网络巧妙结合,如何快速记忆软件设计模式。我们知道软件设计模式有23种,考试的时候经常会考到,但是这么种里面我们如何取判断它呢,如何去记忆它呢&a…...

中文编程开发语言工具应用案例:ps5体验馆计时收费管理系统软件
中文编程开发语言工具应用案例:ps5体验馆计时收费管理系统软件 软件部分功能: 1、计时计费功能:只需点开始计时即可,时间直观显示 2、商品管理功能:可以管理饮料等商品 3、会员管理功能:支持只用手机号作…...

绘制核密度估计图
简介 核密度估计图(Kernel Density Estimation,KDE)是一种用于估计数据分布的非参数方法,通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数(PDF)来显示数据的分布特征,…...

基于深度学习网络的蔬菜水果种类识别算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1数据集准备 4.2构建深度学习模型 4.3模型训练 4.4模型评估 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; wa…...

UE4 距离场
在项目设置的渲染模块可打开距离场 把该节点连上,该节点的意思是,距离表面越近,材质显示值为0 不接近表面时: 接近表面时 可勾选该值即可看到距离场具体效果: 未接触表面时: 接触表面时: 产生…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...