当前位置: 首页 > news >正文

花5分钟学习机器学习基础知识

一、什么是机器学习

机器学习的目的是让机器学习,而不是执行预设的算法。

机器学习适用于难以制定规则的问题,如垃圾邮件识别、图像识别。

机器学习模拟人类学习过程:从样本中学习归纳总结,形成模型,然后应用模型完成任务。

机器学习需要大量样本数据和计算能力支持。当前数据量大、计算能力强的时代非常适合机器学习。

机器学习应用非常广泛,从垃圾邮件识别到自动驾驶都需要机器学习。

机器学习是人工智能的一种方法,其核心思想是让机器从数据中学习规律,而不是依赖预先制定的规则。

深度学习是机器学习的一个分支,它通过构建多层神经网络来学习复杂的特征表示。

机器学习算法,涵盖KNN、回归、SVM等常用算法。

二、问题和回答

Q:机器学习和传统算法编程有什么不同?

A: 传统算法是人预先制定好的规则,机器只是执行。机器学习是让机器从样本中学习归纳总结规则。

Q:机器学习为什么适用于图像识别这类问题?

A: 这类问题难以用规则定义,而机器学习可以模拟人脑学习的过程从样本中获取经验。

Q:机器学习的模型是怎么来的?

A: 通过机器学习算法分析大量样本,得到能处理这个任务的模型。

Q:当前机器学习进步的原因是什么?

A: 数据量增加和计算机算力提升,能提供给机器学习算法足够的样本和计算资源。

Q: 为什么要学习算法的底层实现而不仅仅是调用库?

A: 学习算法的底层实现有助于加深对算法原理的理解,使学习者能够更灵活地应用算法、改进算法甚至创新新的算法。

Q: 有哪些主要的机器学习算法?

A: KNN、线性回归、逻辑回归、SVM、决策树等经典常用算法。

Q: 如何看待调库学习机器学习?

A: 调用库是高效利用现有资源的一种方式,但深入理解算法原理是更好地使用算法的关键,可以帮助应对复杂的问题和场景。

Q:机器学习和人编程序不一样?

A:人编程序是设定规则,机器学习是机器自己找规则。

Q:机器学习能做什么事情?

A:能让机器看图、听话、写字、图片验证码、文字验证码等。

Q:机器是怎么学习的?

A:机器从很多例子中找规律,人给数据和提示,机器自己慢慢学习。

三、构建最简单的聊天机器人入门教程

引子

我们将从零开始构建一个最简单的基于规则的聊天机器人。首先,让我们了解一下最简单聊天机器人的工作原理。

基于规则的聊天机器人

基于规则的聊天机器人是一种简单的聊天机器人类型,它完全依赖于预设的规则来进行问答。这种类型的聊天机器人适合最基础的入门学习。

下面是一个基于规则的聊天机器人的代码示例:

if 用户输入 == "你好吗?":聊天机器人回答("我很好。")
elif 用户输入 == "今天天气怎么样?":聊天机器人回答("今天天气挺好。")

在这个示例中,如果用户输入是 “你好吗?”,聊天机器人会回答 “我很好。”;如果用户输入是 “今天天气怎么样?”,聊天机器人会回答 “今天天气挺好。”

基于规则的聊天机器人原理

基于规则的聊天机器人的工作原理很简单,它通过一系列的条件判断来确定如何回答用户的问题。

  • 如果条件成立,则执行相应的回答。
  • 如果条件不成立,则执行备选方案或结束。

依赖环境

Python 3.7+;

NoteBook;

NLTK。

另外,强烈建议在开发过程中使用Jupyter Notebook,它能够直观地显示代码和输出,使得调试更加便捷。

安装NLTK

NLTK(Natural Language Toolkit)是一个重要的自然语言处理库,我将在后续的教程中用到聊天机器人中,NLTK是一个不可或缺的工具库。你可以使用以下命令安装NLTK:

pip install nltk

NLTK提供了丰富的自然语言处理工具,包括分词(用过jieba分词)、词性标注等,将在后续教程中介绍其具体应用。

基于规则聊天机器人的优缺点

基于规则的聊天机器人具有以下优缺点:

优点:
  1. 实现简单:相对于其他类型的聊天机器人,基于规则的实现较为简单。
  2. 易于调试:规则是明确的,因此在调试过程中可以清晰地追踪问题。
缺点:
  1. 无法处理新问题:基于规则的聊天机器人只能处理事先定义好的问题,无法应对未知的新问题。
  2. 缺乏灵活性:随着问题复杂度的增加,需要定义的规则也会变得越来越多,维护和更新成本高。

在后续的教程中,我将介绍检索型和生成型聊天机器人,使其能够处理新问题。

相关文章:

花5分钟学习机器学习基础知识

一、什么是机器学习 机器学习的目的是让机器学习,而不是执行预设的算法。 机器学习适用于难以制定规则的问题,如垃圾邮件识别、图像识别。 机器学习模拟人类学习过程:从样本中学习归纳总结,形成模型,然后应用模型完成任务。 机器学习需要大量样本数据和计算能力支持。当前数…...

Qt学习:使用OpenGL绘制3D图形

文章目录 前言一、Qt下使用OpenGL绘制图形介绍二、示例完整代码总结 前言 文章中引用的内容均来自这本书中的原文:【Qt Creator快速入门_霍亚飞编著】,本文的示例也是在书中代码的基础上进行编写的(其中部分代码使用原文编译不过&#xff0c…...

在chrom浏览器安装Vue.js devtools插件,遇到恶意扩展程序字样,附百度网盘下载链接

遇到的问题 拖拽下载好的 Vue.js devtools 插件到谷歌扩展程序, 百度网盘下载地址 链接:https://pan.baidu.com/s/1FeK6pwc2UzRUUlMFN3rW5w?pwdw361 提取码:w361 提示: 解决办法 将Vue.js devtools 插件的后缀从.crx改为.zi…...

WSL2的安装与配置(创建Anaconda虚拟环境、更新软件包、安装PyTorch、VSCode)

1. WSL2 安装 以管理员身份打开 PowerShell(“开始”菜单 >“PowerShell” >单击右键 >“以管理员身份运行”),然后输入以下命令: dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /a…...

【鸿蒙软件开发】ArkTS常见组件之单选框Radio和切换按钮Toggle

文章目录 前言一、Radio单选框1.1 创建单选框1.2 添加Radio事件1.3 场景示例二、切换按钮Toggle2.1 创建切换按钮2.2 创建有子组件的Toggle2.3 自定义样式selectedColor属性switchPointColor属性 2.4 添加事件2.5 示例代码 总结 前言 Radio是单选框组件,通常用于提…...

今年阿里云双十一服务器优惠价格讨论_看看大家怎么说?

2023阿里云双十一云服务器大概会降到什么区间?阿里云服务器网认为会在当前的优惠价格基础上,降价10%左右,可以在阿里云CLUB中心领券:aliyun.club 云服务器专用满减优惠券。阿里云服务器网从各个渠道了解到大家对今年阿里云双十一服…...

LC-1402. 做菜顺序(记忆化搜索 ==> 动态规划、贪心)

1402. 做菜顺序 困难 一个厨师收集了他 n 道菜的满意程度 satisfaction ,这个厨师做出每道菜的时间都是 1 单位时间。 一道菜的 「 like-time 系数 」定义为烹饪这道菜结束的时间(包含之前每道菜所花费的时间)乘以这道菜的满意程度&#x…...

泰森多边形

泰森多边形 93 泰森多边形又叫沃洛诺伊图(Voronoi diagram),得名于Georgy Voronoi,是一组由连接两邻点线段的垂直平分线组成的连续多边形。一个泰森多边形内的任一点到构成该多边形的控制点的距离小于到其他多边形控制点的距离。…...

YOLOV8 进行docker环境配置

修改docker文件 原docekerfile中ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/下载很慢,可以在外部下载好,放入docker文件夹中,再将源代码改为ADD Arial.ttf…...

sealos一键部署K8S环境(sealos3.0时代教程过时了,目前已经4.0了,请移步使用Sealos一键安装K8S)

1 安装Sealos(4.0版本) sealos部署k8s贼方便,只需要一条init命令即可,3分钟部署完(下载安装包的时间不算)。 官方教程:https://www.sealyun.com/instructions/1st #主机名: hostnamectl set-hostname mas…...

【C++】stackqueue

适配器是一种设计模式 , 该种模式是将一个类的接口转换成客户希望的另外一个接口 。 虽然 stack 和 queue 中也可以存放元素,但在 STL 中并没有将其划分在容器的行列,而是将其称为 容器适配 器 ,这是因为 stack 和队列只是对其他容…...

Hive篇面试题+详解

Hive篇面试题 1.什么是Hive?它的主要功能是什么? Hive是一个基于Hadoop的数据仓库工具,它提供了一个类SQL的查询语言(HiveQL)来查询和分析存储在Hadoop集群中的大规模数据。Hive的主要功能是将结构化数据映射到Hadoop…...

Mysql批量插入更新如何拆分大事务?

拆分大事务 一、解决方案二、遇到问题之前在运行Mysql任务的时候报错:binlog(1610646347 bytes) write threshold exceeded,原因是Mysql任务提交的是个大事务,超出binlog设定阈值,使得系统自动终止事务 一、解决方案 使用limit分页拆分大事务 CREATE PROCEDURE `split_tran…...

【计算机网络原理】初始网络基础

文章目录 1. 网络发展史1.1 单机时代1.2 网络互连局域网 LAN广域网 WAN 2. 网络通信基础2.1 IP 地址2.2 端口号2.3 协议2.4 五元组2.5 协议分层2.5.1 OSI七层模型2.5.2 TCP/IP五层模型 2.6 封装和分用2.6.1 数据封装(发送方情况)2.6.2 数据分用(接收方情况) 总结 1. 网络发展史…...

【sqlserver】配置管理器打不开

问题描述 无法连接到 WMI 提供程序。您没有权限或者该服务器无法访问。请注意,您只能使用SQL Server 配置管理器来管理 SQL Server 2005 和更高版本的服务 器。无效类[0x80041010] 解决方式: 命令提示符-右键-以管理员身份运行,再把以下代码执行一遍&…...

磁盘清理 | 已经卸载的软件还出现在应用和功能里怎么办?

一句话总结解决方法: 安装Geek Uninstaller,删除卸载残留。 问题描述: 最近磁盘满了,需要删除一些平时不常用的软件,但是发现一个问题。就是已经删除的软件,仍然会出现在“应用与功能”中。并且显示卸载图标为灰色&am…...

C++之异常

目录 一、C语言传统的处理错误的方式 二、C的异常 1、概念 2、关键字 3、基本格式 三、异常的抛出和捕获 1、异常的抛出和匹配原则 2、 在函数调用链中异常栈展开匹配原则 四、异常抛派生类,基类捕获 五、异常的重新抛出 六、异常安全 七、异常的优缺点…...

动态天气预报:Living Weather HD for Mac

Living Weather HD能够为Mac用户提供及时、准确、个性化的天气信息,并提供了丰富的定制选项,使用户能够更加方便地查看天气状况。 具有以下特点: 显示世界各地的准确天气预报和当地时间。自动探测出用户所在的首个地点,并通过搜…...

深度神经网络时与协方差矩阵

平时训练深度神经网络时,什么时候用到了协方差矩阵 在深度神经网络的平时训练过程中,一般情况下不直接使用协方差矩阵。然而,协方差矩阵的概念和相关性的考虑在某些情况下可以对网络的训练和优化起到一定的指导作用。 下面是一些与协方差矩…...

idea中java类属性(字段)链式赋值

很多人看到标题可能会想到 lombok 的 Builder,lombok 在国内用的挺多的,开源的组件中 mybatis-plus 中用到了这个,使用这个有一个问题就是通过对应 get 和 set 方法找不到对应的赋值方法,因为 lombok 使用了 apt 在编译期生成了相…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键&#xff…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...