基于指数分布优化的BP神经网络(分类应用) - 附代码
基于指数分布优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于指数分布优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.指数分布优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 指数分布算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用指数分布算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.指数分布优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 指数分布算法应用
指数分布算法原理请参考:https://blog.csdn.net/u011835903/article/details/131025569
指数分布算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从指数分布算法的收敛曲线可以看到,整体误差是不断下降的,说明指数分布算法起到了优化的作用:



5.Matlab代码
相关文章:
基于指数分布优化的BP神经网络(分类应用) - 附代码
基于指数分布优化的BP神经网络(分类应用) - 附代码 文章目录 基于指数分布优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.指数分布优化BP神经网络3.1 BP神经网络参数设置3.2 指数分布算法应用 4.测试结果…...
Python--练习:使用while循环求1~100之间,所有偶数的和(涉及if判断是不是偶数)
案例:求1~100之间,所有偶数的和 思考: 先套用原有基础模式,之后再思考其他的。 其实就是在之前文章 Python--练习:使用while循环求1..100的和-CSDN博客 的基础上,再判断如果获取到里面的全部偶数&#…...
带温度的softmax
用pytorch写一下使用带有温度的softmax的demo import torch import torch.nn.functional as F# 定义带有温度的softmax函数 def temperature_softmax(logits, temperature1.0):return F.softmax(logits / temperature, dim-1)# 输入logits logits torch.tensor([[1.0, 2.0, 3.…...
js函数调用的方式有几种
在 JavaScript 中,函数可以通过不同的方式进行调用。以下是常见的几种函数调用方式: 函数调用:使用函数名称后跟一对小括号来调用函数,这是最基本的调用方式。 functionName(); 方法调用:函数可以作为对象的方法进行调…...
聊聊设计模式--简单工厂模式
简单工厂模式 前面也学了很多各种微服务架构的组件,包括后续的服务部署、代码管理、Docker等技术,那么作为后端人员,最重要的任务还是代码编写能力,如何让你的代码写的漂亮、易扩展,让别人一看赏心悦目,…...
Python基础教程:内置函数之字典函数的使用方法
嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 len(字典名): 返回键的个数,即字典的长度 # len(字典名): # 返回键的个数,即字典的长度dic {a:123,b:456,c:789…...
Pytorch从零开始实战06
Pytorch从零开始实战——明星识别 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——明星识别环境准备数据集模型选择开始训练模型可视化模型预测总结 环境准备 本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1c…...
RT-Thread学习笔记(三):线程管理
线程管理 线程管理相关概念什么是时间片轮转调度器锁线程运行机制线程的五种状态 动态和静态创建线程区别动态和静态创建线程优缺点RT-Thread动态线程管理函数动态创建线程动态删除线程 RT-Thread静态线程管理函数静态创建线程 线程其他操作线程启动线程延时获得当前执行的线程…...
pymysql连接Mariadb/Mysql出现错误(配置正确情况下)解决办法
场景:在kali中使用python中pymysql对Mariadb进行连接,在整个过程中配置全部正确,但是就是无法进行连接,提示结果如下: Access denied for user rootlocalhost解决办法:进入数据库中,将默认密码…...
数据仓库扫盲系列(1):数据仓库诞生原因、基本特点、和数据库的区别
数据仓库的诞生原因 随着互联网的普及,信息技术已经深入到各行各业,并逐步融入到企业的日常运营中。然而,当前企业在信息化建设过程中遇到了一些困境与挑战。 1、历史数据积存。 过去企业的业务系统往往是在较长时间内建设的,很…...
DataX-web安装部署和使用
DataX-web的环境准备 MySQL (5.5) 必选,对应客户端可以选装, Linux服务上若安装mysql的客户端可以通过部署脚本快速初始化数据库 JDK (1.8.0_xxx) 必选 DataX 必选 Python (2.x) (支持Python3需要修改替换datax/bin下面的三个python文件,替换文件在do…...
sqlmap防御以及文件读写
一.防御 过滤 1.使用过滤函数 $email filter_var($_POST[email], FILTER_VALIDATE_EMAIL); if ($email) { // input is a valid email address } else { // input is not a valid email address 使用 filter_var() 函数和 FILTER_VALIDATE_EMAIL 过滤器来验证用户输…...
【源码】C/C++运动会计分系统 期末设计源码
文章目录 题目介绍功能源码效果展示带报告(内容) 题目介绍 使用语言: 两个版本都会发: 版本1:C语言 版本2: C 代码量: 500 题目介绍: 要求:初始化输入:N-参赛…...
Ubuntu安装Docker
卸载官方库中之前的旧版本 sudo apt-get remove docker docker-engine docker-ce docker.io更新安装包列表 sudo apt-get update安装以下包以使apt可以通过HTTPS使用存储库 sudo apt-get install -y apt-transport-https ca-certificates curl software-properties-common添…...
useReducer+createContext真的可以代替Redux吗?
概念 useReducer useReducer 是 React 提供的一个状态管理钩子,通常用于管理组件的复杂状态逻辑。它采用两个参数:reducer 函数和初始状态。Reducer 函数接受当前状态和一个操作(action),并返回一个新的状态。这有点…...
Mysql忘记登入密码找回 方法(超详细)
如果你找不到 MySQL 的安装路径,可以尝试以下几种方法: 检查环境变量:打开命令提示符,并运行以下命令: echo %PATH% 这会显示系统的环境变量。查找其中是否包含 MySQL 相关的路径,例如 C:\Program Files…...
NodeMCU ESP8266 读取按键外部输入信号详解(图文并茂)
NodeMCU ESP8266 读取按键外部输入信号教程(图文并茂) 文章目录 NodeMCU ESP8266 读取按键外部输入信号教程(图文并茂)前言按键输入常用接口pinModedigitalRead 示例代码结论 前言 ESP8266如何检测外部信号的输入,通常…...
Oracle如何插入图片数据?
1、创建表,注意:插入图片的列要定义成BLOB类型 create table image_lob(t_id varchar2(5) not null,t_image blob not null);2、创建图片目录,images为目录名 create or replace directory "images" as f:\pic\;3、创建存储过程&am…...
C++特性——inline内联函数
1. 内联函数 1.1 C语言的宏 在C语言中,我们学习了用#define定义的宏函数,例如: #define Add(x, y) ((x) (y)) //两数相加相较于函数,我们知道宏替换具有如下比较明显的优点: 性能优势: 宏在预处理阶段…...
pensieve运行的经验
1运行run_videopy时出现如下问题: cmd: Union[List[str], str], ^ SyntaxError: invalid syntax原因是EasyProcess版本与python版本不对应,解决办法可见之前这篇博客:SyntaxError: invalid syntax。 2解决完上述问题后,输…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
