当前位置: 首页 > news >正文

Sobel算子详解及例程

Sobel算子是一种经典的边缘检测算子,被广泛应用于图像处理领域。它基于图像亮度的变化率来检测边缘的位置,主要通过计算图像中像素点的梯度来实现。

Sobel算子分为水平和垂直两个方向的算子,记作Gx和Gy。它们分别对图像进行水平和垂直方向的卷积运算,得到对应方向上的梯度值。

具体而言,Sobel算子使用一个3x3的卷积核对图像进行卷积操作,如下所示:

Gx = | -1 0 1 | | -2 0 2 | | -1 0 1 |

Gy = | -1 -2 -1 | | 0 0 0 | | 1 2 1 |

卷积操作后,可以通过以下公式计算图像的梯度幅值和方向:

梯度幅值 G = sqrt(Gx^2 + Gy^2)

梯度方向 θ = arctan(Gy / Gx)

其中,G表示梯度幅值,θ表示梯度方向。

Sobel算子的工作原理是,当图像中存在边缘时,像素点的亮度会发生明显的变化,从而导致梯度值较大。在边缘的两侧,梯度方向会垂直于边缘线,可以通过梯度的方向来判断边缘的方向。

Sobel算子具有以下特点:

  1. 简单且易于实现。
  2. 对噪声具有一定的平滑效果,能够抑制细小的波动。
  3. 在边缘检测中不仅考虑了水平方向的边缘,还考虑了垂直方向的边缘,提供了更全面的信息。

在实际应用中,常将水平和垂直方向上的梯度幅值进行组合,得到综合的边缘强度。这可以通过计算梯度幅值的平方根来实现,即 G = sqrt(Gx^2 + Gy^2)。

总结起来,Sobel算子是一种用于图像边缘检测的经典算子,通过计算图像的梯度来寻找边缘的位置。它简单而有效,是许多图像处理任务的基础。

以下是一个简单的Python例程,演示了如何使用Sobel算子进行边缘检测:

import cv2
import numpy as np# 读取图像
img = cv2.imread('input.jpg', 0)  # 以灰度模式读取图像# 对图像进行Sobel边缘检测
gradient_x = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)# 计算梯度幅值和方向
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)
gradient_direction = np.arctan2(gradient_y, gradient_x)# 将梯度幅值和方向转换为0-255之间的整数
gradient_magnitude = cv2.normalize(gradient_magnitude, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
gradient_direction = cv2.normalize(gradient_direction, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)# 显示结果
cv2.imshow('Sobel Magnitude', gradient_magnitude)
cv2.imshow('Sobel Direction', gradient_direction)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个例程中,首先使用OpenCV的cv2.imread函数读取输入图像,并以灰度模式读取。然后,通过cv2.Sobel函数分别对图像在水平和垂直方向进行卷积操作,得到梯度值。接下来,使用NumPy库计算梯度幅值和方向,并将其归一化到0-255的范围。最后,使用cv2.imshow函数显示边缘检测结果。

希望这个例程能够帮助你理解和运用Sobel算子进行边缘检测。

相关文章:

Sobel算子详解及例程

Sobel算子是一种经典的边缘检测算子,被广泛应用于图像处理领域。它基于图像亮度的变化率来检测边缘的位置,主要通过计算图像中像素点的梯度来实现。 Sobel算子分为水平和垂直两个方向的算子,记作Gx和Gy。它们分别对图像进行水平和垂直方向的…...

ScrapeKit 和 Swift 编写程序

以下是一个使用 ScrapeKit 和 Swift 编写的爬虫程序,用于爬取 图片。同时,我们使用了proxy 这段代码来获取代理。 import ScrapeKit ​ class PeopleImageCrawler: NSObject, ScrapeKit.Crawler {let url: URLlet proxyUrl: URL ​init(url: URL, proxy…...

Java基础面试题知识点总结(上篇)

大家好,我是栗筝i,从 2022 年 10 月份开始,我持续梳理出了全面的 Java 技术栈内容,一方面是对自己学习内容进行整合梳理,另一方面是希望对大家有所帮助,使我们一同进步。得到了很多读者的正面反馈。 而在 2…...

STM32进行LVGL裸机移植

本文的移植参考的是正点原子的课程《手把手教你学LVGL图形界面编程》 基于该课程和《LVGL开发指南_V1.3》“第二章 LVGL 无操作系统移植”,然后结合自身的实际情况进行整理。 先根据自己的习惯,创建基础的单片机工程,然后在APP业务层和DRIVE…...

python解析robot framework的output.xml并生成html

一、用pyh模块解析stat结点数据(output.py) #codingutf-8import xml.dom.minidom import xml.etree.ElementTree#打开xml文档 dom xml.dom.minidom.parse(./ui/output.xml);root2 xml.etree.ElementTree.parse(./ui/output.xml) #得到文档元素对象 ro…...

【RuoYi移动端】uni-app中的单击和双击事件

1、单击事件: click"enterpriseSelect" 2、双击事件: touchend"userinfo"...

使用 conda 在 Ubuntu 16.04 上安装 Python 3.9 的步骤:和 VSCode配置

一、使用conda在 Ubuntu 16.04 上安装 Python 3.9 的步骤: 当然可以,conda 是一个非常强大的包管理器,它可以方便地管理不同版本的 Python 和各种库包。以下是使用 conda 在 Ubuntu 16.04 上安装 Python 3.9 的步骤: 1. 安装 Miniconda Miniconda 是 Anaconda 的轻量级版…...

spring6-国际化:i18n | 数据校验:Validation

文章目录 1、国际化:i18n1.1、i18n概述1.2、Java国际化1.3、Spring6国际化1.3.1、MessageSource接口1.3.2、使用Spring6国际化 2、数据校验:Validation2.1、Spring Validation概述2.2、实验一:通过Validator接口实现2.3、实验二:B…...

【MicroSoft Edge】格式化的显示JSON格式的数据

当我们没有进行任何操作的时候,默认浏览器给我们展示的JSON的数据是这样的: 看着十分不便。 解决方案: 首先点击 MicroSoft Edge 浏览器右上角的三点,如何选择扩展 点击 获取Microsoft Edge 扩展 搜索 JSONView,第一…...

【c++】跟webrtc学std array 2:TaskExecutorMap单例用法

D:\XTRANS\m98_rtc\ndrtc-webrtc\src\base\task\task_executor.ccstd array实现的map:TaskExecutorMap // Maps TaskTraits extension IDs to registered TaskExecutors. Index |n| // corresponds to id |n - 1|. using TaskExecutorMap =std::array<TaskExecutor*, Task…...

力扣每日一题59:螺旋矩阵||

题目描述&#xff1a; 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[[1,2,3],[8,9,4],[7,6,5]]示例 2&#xff1a; 输入&am…...

codeforces (C++ In Love )

题目&#xff1a; 翻译&#xff1a; 思路&#xff1a; 1、在一个集合中有多组线段&#xff0c;如果有不相交的两组线段&#xff0c;则输出YES&#xff0c;否则输出NO。 2、每次操纵可以选择增加一组线段或者删除一组线段后&#xff0c;输出YES或者NO。 3、用flag标记该线段是否…...

【python】py文件全自动打包成spec文件

说明&#xff1a; 自动获取当前根目录下所有py文件生成spec文件&#xff0c;直接运行pyinstaller进行打包即可。直接打包成单执行文件。 直接上代码 import ospathex []def recursion(path, main):if path[:1] ! /:path /listpath os.listdir(path)for item in listpath:if…...

YOLOv5-调用官方权重进行检验(目标检测)

&#x1f368; 本文为[&#x1f517;365天深度学习训练营学习记录博客 &#x1f366; 参考文章&#xff1a;365天深度学习训练营-第7周&#xff1a;咖啡豆识别&#xff08;训练营内部成员可读&#xff09; &#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制](https…...

springMVC中统一异常处理@ControllerAdvice

1.在DispatcherServlet中初始化HandlerExceptionResolver 2.controller执行完成后执行processDispatchResult(processedRequest,response,mappedHandler,mv,dispatchException),有异常则处理异常 3.ExcepitonHandlerExceptionResolver中执行方法doResolveHandlerMethodExceptio…...

【Java】<泛型>,在编译阶段约束操作的数据结构,并进行检查。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ JAVA泛型 泛型介绍&#xff1a; ①泛型&#…...

解决谷歌学术bib信息不全的问题

在我们撰写学术论文时&#xff0c;经常需要引用参考文献。如果用latex撰写论文&#xff0c;势必会用到文献的bib信息&#xff0c;大部分的教程都会告诉我们去google scholar上去搜索。 一、问题描述 搜索一篇文章&#xff0c;然后选择cite&#xff0c;再选择bib。 很明显&…...

初始Redis 分布式结构的发展演变

目录 Redis的特点和使用场景 分布式系统的引入 单机系统 分布式系统 应用服务器的增多&#xff08;处理更多的请求&#xff09; 数据库读写分离&#xff08;数据服务器的增多) 引入缓存 应对更大的数据量 业务拆分&#xff1a;微服务 Redis的特点和使用场景 我们先来…...

关于动态内存管理中的常见练习题

文章目录 前言练习1&#xff1a;练习2&#xff1a;练习3&#xff1a;练习4&#xff1a; 前言 学习完C语言中的动态内存管理&#xff0c;大家开始利用动态内存管理来去开辟空间&#xff0c;经过一顿狂敲代码后&#xff0c;发现了问题&#xff0c;程序要么崩掉&#xff0c;要么运…...

冒泡排序、插入排序、选择排序和快速排序的原理

下面是对冒泡排序、插入排序、选择排序和快速排序的原理的简要解释&#xff1a; 冒泡排序&#xff08;Bubble Sort&#xff09;&#xff1a;冒泡排序是一种简单的排序算法。它通过多次迭代比较相邻的元素&#xff0c;并交换它们的位置&#xff0c;使得较大&#xff08;或较小&…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...