当前位置: 首页 > news >正文

yolov7改进优化之蒸馏(二)

续yolov7改进优化之蒸馏(一)-CSDN博客
上一篇已经基本写出来yolov7/v5蒸馏的整个过程,不过要真的训起来我们还需要进行一些修改。

Model修改

蒸馏需要对teacher和student网络的特征层进行loss计算,因此我们forward时要能够返回需要的中间层,这需要修改yolo.py中的Model类。

forward_once接口修改

增加接口参数 extra_features用于指定要返回的中间层的索引:

def forward_once(self, x, profile=False, extra_features: list = []):y, dt = [], []  # outputsfeatures = []for i, m in enumerate(self.model):if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif not hasattr(self, "traced"):self.traced = Falseif self.traced:if (isinstance(m, Detect)or isinstance(m, IDetect)or isinstance(m, IAuxDetect)or isinstance(m, IKeypoint)):breakif profile:c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0  # FLOPSfor _ in range(10):m(x.copy() if c else x)t = time_synchronized()for _ in range(10):m(x.copy() if c else x)dt.append((time_synchronized() - t) * 100)print("%10.1f%10.0f%10.1fms %-40s" % (o, m.np, dt[-1], m.type))x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif i in extra_features:features.append(x)if not self.training and len(extra_features) != 0 and len(extra_features) == len(features):return x, featuresif profile:print("%.1fms total" % sum(dt))if len(extra_features) != 0:return x, featuresif self.training and isinstance(x, tuple):x = x[-1]return x

主要增加将中间层返回的代码。

forward接口修改

forward接口调用了forward_once接口,因此,forward接口也需要增加这个参数。

def forward(self, x, augment=False, profile=False, extra_features: list = []):if augment:img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self.forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi[..., :4] /= si  # de-scaleif fi == 2:yi[..., 1] = img_size[0] - yi[..., 1]  # de-flip udelif fi == 3:yi[..., 0] = img_size[1] - yi[..., 0]  # de-flip lry.append(yi)return torch.cat(y, 1), None  # augmented inference, trainelse:return self.forward_once(x, profile, extra_features)  # single-scale inference, train

hyp文件修改

在hyp文件中添加student_kd_layers和teacher_kd_layers来指定要蒸馏的层,我们可以指定IDetect前面的三个特征层:

student_kd_layers: [75,88,101]
teacher_kd_layers: [75,88,101]

训练

训练方式与正常训练一样,只是启动时要指定teacher-weights。

结语

这一篇结合上一篇就可以吧基于FGD算法的蒸馏训练起来了,其他蒸馏的修改也大同小异了。
f77d79a3b79d6d9849231e64c8e1cdfa~tplv-dy-resize-origshort-autoq-75_330.jpeg

相关文章:

yolov7改进优化之蒸馏(二)

续yolov7改进优化之蒸馏(一)-CSDN博客 上一篇已经基本写出来yolov7/v5蒸馏的整个过程,不过要真的训起来我们还需要进行一些修改。 Model修改 蒸馏需要对teacher和student网络的特征层进行loss计算,因此我们forward时要能够返回需…...

生产与作业管理(POM)的历史

1800年,惠特尼:零件标准化、质量管理。 1881年,泰勒:人员选拔、计划和时程安排、动作研究。管理与劳动分开。 - 使雇员与工作相适应。 - 提供适当的训练。 - 提供正确的工作方法和工具。 - 建立适当的激励机制促使工作得以完成。 …...

交换机基础(二)

一、VLAN 基础知识 虚拟局域网 (Virtual Local Area Network,VLAN) 是一种将局域网设 备从逻辑上划分成一个个网段,从而实现虚拟工作组的数据交换技术。 这一技术主要应用于3层交换机和路由器中,但主流应用还是在3层交换机中。 VLAN 是基于物理网络上构建…...

回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BP-Adaboost的BP…...

【蓝桥每日一题]-动态规划 (保姆级教程 篇11)#方格取数2.0 #传纸条

目录 题目:方格取数 思路: 题目:传纸条 思路: 题目:方格取数 (跑两次) 思路: 如果记录一种方案后再去跑另一个方案,影响因素太多了,所以两个方案要同时开…...

前端TypeScript学习day05-索引签名、映射与类型声明文件

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 索引签名类型 映射类型 索引查询(访问)类型 基本使用 同时查询多个索引的类型…...

Echarts柱状图数据过多设置滚动条效果

未设置前: 设置后: dataZoom: [ { show: true, height:8, bottom:0, startValue: 0, //起始值 endValue: 5, //结束值 showDetail: fals…...

64 最长公共子序列

最长公共子序列 题解1 DP 给定两个字符串 text1 和 text2,返回这两个字符串的 最长公共子序列的长度。如果不存在 公共子序列,返回 0 。 一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些…...

matlab常用函数

绘图函数 一、plot():二维图形绘制 1、plot(y): 对于只含一个输入参数的plot函数,如果输入参数y为向量,则以该参数为纵坐标,横坐标从1开始至与向量的长度相等;如果输入参数y是矩阵时,则按列绘…...

Python配置镜像源

Python3安装pika的准备 Windows下配置镜像源可以按照如下操作。 1.winR执行%APPDATA% %APPDATA%后,创建pip文件夹,并创建pip.ini配置文件 查看此目录下是否有pip目录,如果没有则需要创建,并在pip目录下以文本方式添加pip.ini文件…...

Linux防火墙Centos6的常用命令iptables

文章目录 一、iptables基础知识二、作者玩玩的配置文件三、iptables中常用的参数以及作用-j参数的动作类型 四、安装iptables五、iptables启动命令六、iptables命令结构命令例子默认执行方式执行iptables命令和写入配置文件两种方式的对比 相对常用的命令参考文档 一、iptables…...

python中的贪心算法-求顾客的最小的等待时间

一. 设有n个顾客同时等待一项服务。顾客i需要的服务时间为ti(1<i<n)。如何安排n个顾客的服务次序才能使顾客总的等待时间达到最小? nint(input(请输入顾客的位数: ))times[] for i in range(n):timeint(input(f请输入顾客{i1}的服务时间: ))times.append(time) times.so…...

【JAVA springframework.http】如何发送HTTP请求

Springboot之restTemplate https://blog.csdn.net/weixin_43702146/article/details/116567707 public Result doHandlePostJson(String restUri, String jsonData)throws Exception {Result result null;try {// logger记录log.info("doHandlePostJson request restUr…...

字符串反转(Python)

1. 整体流程 为了实现递归反转n个字符串的功能&#xff0c;我们可以按照以下步骤进行操作&#xff1a; 步骤动作1定义递归函数2判断递归结束条件3处理递归函数的基本情况4调用递归函数&#xff0c;递归处理子问题5返回递归结果 我将详细解释每一步的具体操作&#xff0c;并提…...

驱动开发day4

通过字符设备驱动的分步实现编写LED驱动&#xff0c;另外实现设备文件和驱动的绑定 head.h #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct {unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR; }…...

Flink之Window窗口机制

窗口Window机制 窗口概述窗口的分类是否按键分区按键分区窗口非按键分区 按照驱动类型按具体分配规则滚动窗口Tumbling Windows滑动窗口 Sliding Windows会话窗口 Session Windows全局窗口 Global Windows 时间语义窗口分配器 Window Assigners时间窗口计数窗口例子 窗口函数 W…...

【C++】继承 ⑧ ( 继承 + 组合 模式的类对象 构造函数 和 析构函数 调用规则 )

文章目录 一、继承 组合 模式的类对象 构造函数和析构函数调用规则1、场景说明2、调用规则 二、完整代码示例分析1、代码分析2、代码示例 一、继承 组合 模式的类对象 构造函数和析构函数调用规则 1、场景说明 如果一个类 既 继承了 基类 ,又 在类中 维护了一个 其它类型 的…...

Spark内核调度

目录 一、DAG &#xff08;1&#xff09;概念 &#xff08;2&#xff09;Job和Action关系 &#xff08;3&#xff09;DAG的宽窄依赖关系和阶段划分 二、Spark内存迭代计算 三、spark的并行度 &#xff08;1&#xff09;并行度设置 &#xff08;2&#xff09;集群中如何规划并…...

STM32串口

前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 目前已经学习了GPIO的输入输出&#xff0c;但是没有完整的显示信息&#xff0c;最便宜的显示就是串口。 000 -111 AVR单片机 已经学会过了&#xff0c; 提示&#xff1a;以下是本篇文章正文内容&#x…...

解决使用WebTestClient访问接口报[185c31bb] 500 Server Error for HTTP GET “/**“

解决使用WebTestClient访问接口报[185c31bb] 500 Server Error for HTTP GET "/**" 问题发现问题解决 问题发现 WebTestClient 是 Spring WebFlux 框架中提供的用于测试 Web 请求的客户端工具。它可以不用启动服务器&#xff0c;模拟发送 HTTP 请求并验证服务器的响…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

Python学习(8) ----- Python的类与对象

Python 中的类&#xff08;Class&#xff09;与对象&#xff08;Object&#xff09;是面向对象编程&#xff08;OOP&#xff09;的核心。我们可以通过“类是模板&#xff0c;对象是实例”来理解它们的关系。 &#x1f9f1; 一句话理解&#xff1a; 类就像“图纸”&#xff0c;对…...