yolov7改进优化之蒸馏(二)
续yolov7改进优化之蒸馏(一)-CSDN博客
上一篇已经基本写出来yolov7/v5蒸馏的整个过程,不过要真的训起来我们还需要进行一些修改。
Model修改
蒸馏需要对teacher和student网络的特征层进行loss计算,因此我们forward时要能够返回需要的中间层,这需要修改yolo.py中的Model类。
forward_once接口修改
增加接口参数 extra_features
用于指定要返回的中间层的索引:
def forward_once(self, x, profile=False, extra_features: list = []):y, dt = [], [] # outputsfeatures = []for i, m in enumerate(self.model):if m.f != -1: # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layersif not hasattr(self, "traced"):self.traced = Falseif self.traced:if (isinstance(m, Detect)or isinstance(m, IDetect)or isinstance(m, IAuxDetect)or isinstance(m, IKeypoint)):breakif profile:c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPSfor _ in range(10):m(x.copy() if c else x)t = time_synchronized()for _ in range(10):m(x.copy() if c else x)dt.append((time_synchronized() - t) * 100)print("%10.1f%10.0f%10.1fms %-40s" % (o, m.np, dt[-1], m.type))x = m(x) # runy.append(x if m.i in self.save else None) # save outputif i in extra_features:features.append(x)if not self.training and len(extra_features) != 0 and len(extra_features) == len(features):return x, featuresif profile:print("%.1fms total" % sum(dt))if len(extra_features) != 0:return x, featuresif self.training and isinstance(x, tuple):x = x[-1]return x
主要增加将中间层返回的代码。
forward接口修改
forward接口调用了forward_once接口,因此,forward接口也需要增加这个参数。
def forward(self, x, augment=False, profile=False, extra_features: list = []):if augment:img_size = x.shape[-2:] # height, widths = [1, 0.83, 0.67] # scalesf = [None, 3, None] # flips (2-ud, 3-lr)y = [] # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self.forward_once(xi)[0] # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # saveyi[..., :4] /= si # de-scaleif fi == 2:yi[..., 1] = img_size[0] - yi[..., 1] # de-flip udelif fi == 3:yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lry.append(yi)return torch.cat(y, 1), None # augmented inference, trainelse:return self.forward_once(x, profile, extra_features) # single-scale inference, train
hyp文件修改
在hyp文件中添加student_kd_layers和teacher_kd_layers来指定要蒸馏的层,我们可以指定IDetect前面的三个特征层:
student_kd_layers: [75,88,101]
teacher_kd_layers: [75,88,101]
训练
训练方式与正常训练一样,只是启动时要指定teacher-weights。
结语
这一篇结合上一篇就可以吧基于FGD算法的蒸馏训练起来了,其他蒸馏的修改也大同小异了。
相关文章:

yolov7改进优化之蒸馏(二)
续yolov7改进优化之蒸馏(一)-CSDN博客 上一篇已经基本写出来yolov7/v5蒸馏的整个过程,不过要真的训起来我们还需要进行一些修改。 Model修改 蒸馏需要对teacher和student网络的特征层进行loss计算,因此我们forward时要能够返回需…...
生产与作业管理(POM)的历史
1800年,惠特尼:零件标准化、质量管理。 1881年,泰勒:人员选拔、计划和时程安排、动作研究。管理与劳动分开。 - 使雇员与工作相适应。 - 提供适当的训练。 - 提供正确的工作方法和工具。 - 建立适当的激励机制促使工作得以完成。 …...
交换机基础(二)
一、VLAN 基础知识 虚拟局域网 (Virtual Local Area Network,VLAN) 是一种将局域网设 备从逻辑上划分成一个个网段,从而实现虚拟工作组的数据交换技术。 这一技术主要应用于3层交换机和路由器中,但主流应用还是在3层交换机中。 VLAN 是基于物理网络上构建…...

回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测
回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BP-Adaboost的BP…...

【蓝桥每日一题]-动态规划 (保姆级教程 篇11)#方格取数2.0 #传纸条
目录 题目:方格取数 思路: 题目:传纸条 思路: 题目:方格取数 (跑两次) 思路: 如果记录一种方案后再去跑另一个方案,影响因素太多了,所以两个方案要同时开…...

前端TypeScript学习day05-索引签名、映射与类型声明文件
(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 索引签名类型 映射类型 索引查询(访问)类型 基本使用 同时查询多个索引的类型…...

Echarts柱状图数据过多设置滚动条效果
未设置前: 设置后: dataZoom: [ { show: true, height:8, bottom:0, startValue: 0, //起始值 endValue: 5, //结束值 showDetail: fals…...

64 最长公共子序列
最长公共子序列 题解1 DP 给定两个字符串 text1 和 text2,返回这两个字符串的 最长公共子序列的长度。如果不存在 公共子序列,返回 0 。 一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些…...
matlab常用函数
绘图函数 一、plot():二维图形绘制 1、plot(y): 对于只含一个输入参数的plot函数,如果输入参数y为向量,则以该参数为纵坐标,横坐标从1开始至与向量的长度相等;如果输入参数y是矩阵时,则按列绘…...
Python配置镜像源
Python3安装pika的准备 Windows下配置镜像源可以按照如下操作。 1.winR执行%APPDATA% %APPDATA%后,创建pip文件夹,并创建pip.ini配置文件 查看此目录下是否有pip目录,如果没有则需要创建,并在pip目录下以文本方式添加pip.ini文件…...
Linux防火墙Centos6的常用命令iptables
文章目录 一、iptables基础知识二、作者玩玩的配置文件三、iptables中常用的参数以及作用-j参数的动作类型 四、安装iptables五、iptables启动命令六、iptables命令结构命令例子默认执行方式执行iptables命令和写入配置文件两种方式的对比 相对常用的命令参考文档 一、iptables…...
python中的贪心算法-求顾客的最小的等待时间
一. 设有n个顾客同时等待一项服务。顾客i需要的服务时间为ti(1<i<n)。如何安排n个顾客的服务次序才能使顾客总的等待时间达到最小? nint(input(请输入顾客的位数: ))times[] for i in range(n):timeint(input(f请输入顾客{i1}的服务时间: ))times.append(time) times.so…...
【JAVA springframework.http】如何发送HTTP请求
Springboot之restTemplate https://blog.csdn.net/weixin_43702146/article/details/116567707 public Result doHandlePostJson(String restUri, String jsonData)throws Exception {Result result null;try {// logger记录log.info("doHandlePostJson request restUr…...
字符串反转(Python)
1. 整体流程 为了实现递归反转n个字符串的功能,我们可以按照以下步骤进行操作: 步骤动作1定义递归函数2判断递归结束条件3处理递归函数的基本情况4调用递归函数,递归处理子问题5返回递归结果 我将详细解释每一步的具体操作,并提…...

驱动开发day4
通过字符设备驱动的分步实现编写LED驱动,另外实现设备文件和驱动的绑定 head.h #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct {unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR; }…...

Flink之Window窗口机制
窗口Window机制 窗口概述窗口的分类是否按键分区按键分区窗口非按键分区 按照驱动类型按具体分配规则滚动窗口Tumbling Windows滑动窗口 Sliding Windows会话窗口 Session Windows全局窗口 Global Windows 时间语义窗口分配器 Window Assigners时间窗口计数窗口例子 窗口函数 W…...

【C++】继承 ⑧ ( 继承 + 组合 模式的类对象 构造函数 和 析构函数 调用规则 )
文章目录 一、继承 组合 模式的类对象 构造函数和析构函数调用规则1、场景说明2、调用规则 二、完整代码示例分析1、代码分析2、代码示例 一、继承 组合 模式的类对象 构造函数和析构函数调用规则 1、场景说明 如果一个类 既 继承了 基类 ,又 在类中 维护了一个 其它类型 的…...

Spark内核调度
目录 一、DAG (1)概念 (2)Job和Action关系 (3)DAG的宽窄依赖关系和阶段划分 二、Spark内存迭代计算 三、spark的并行度 (1)并行度设置 (2)集群中如何规划并…...

STM32串口
前言 提示:这里可以添加本文要记录的大概内容: 目前已经学习了GPIO的输入输出,但是没有完整的显示信息,最便宜的显示就是串口。 000 -111 AVR单片机 已经学会过了, 提示:以下是本篇文章正文内容&#x…...

解决使用WebTestClient访问接口报[185c31bb] 500 Server Error for HTTP GET “/**“
解决使用WebTestClient访问接口报[185c31bb] 500 Server Error for HTTP GET "/**" 问题发现问题解决 问题发现 WebTestClient 是 Spring WebFlux 框架中提供的用于测试 Web 请求的客户端工具。它可以不用启动服务器,模拟发送 HTTP 请求并验证服务器的响…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?
系列回顾: 在上一篇《React核心概念:State是什么?》中,我们学习了如何使用useState让一个组件拥有自己的内部数据(State),并通过一个计数器案例,实现了组件的自我更新。这很棒&#…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验
2024年初,人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目(一款融合大型语言模型能力的云端AI编程IDE)时,技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力,TRAE在WayToAGI等…...