当前位置: 首页 > news >正文

2316. 统计无向图中无法互相到达点对数


2316. 统计无向图中无法互相到达点对数
难度: 中等
来源: 每日一题 2023.10.21

给你一个整数 n ,表示一张 无向图 中有 n 个节点,编号为 0n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 aibi 之间有一条 无向 边。

请你返回 无法互相到达 的不同 点对数目

示例 1:

输入:n = 3, edges = [[0,1],[0,2],[1,2]]
输出:0
解释:所有点都能互相到达,意味着没有点对无法互相到达,所以我们返回 0 。

示例 2:

输入:n = 7, edges = [[0,2],[0,5],[2,4],[1,6],[5,4]]
输出:14
解释:总共有 14 个点对互相无法到达:
[[0,1],[0,3],[0,6],[1,2],[1,3],[1,4],[1,5],[2,3],[2,6],[3,4],[3,5],[3,6],[4,6],[5,6]]
所以我们返回 14 。

提示:

  • 1 <= n <= 10^5
  • 0 <= edges.length <= 2 * 10^5
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • 不会有重复边。
class StockSpanner {public long countPairs(int n, int[][] edges) {}
}

分析与题解

  • 邻接表 + 深度优先遍历

    这个题目其实就是对无向图的邻接表的理解, 那么求两个点没有任何关联, 我们只要如果只要求出一条完整的边, 那么剩下所有的节点一定与这条完整的边不连接, 不连接的含义就是这条边上的节点与剩下的所有节点都是两两无法相互到达.

    那么基于这样的理论, 我们假设这条边上的节点个数是 m 个, 那么对于这条边上的所有节点与剩下的节点两两无法相互到达的组合个数为 m * (n - m) .

    另外, 假设 节点1节点2 无法相互到达, 那么深度优先遍历 节点1 时,会计算一遍 节点1节点2; 深度优先遍历 节点1 时, 同样会计算一遍 节点1节点2. 所以最终结果我们需要除以2.

    接下来, 我们看一下具体的解题过程.

    首先, 我们先创建无向图的邻接表, 这里我使用的是HashMap来作为邻接表的存储空间.

    // 创建邻接表
    HashMap<Integer, ArrayList<Integer>> cache = new HashMap<>();
    for(int i = 0; i < n; i++) {cache.put(i, new ArrayList<>());
    }
    for(int[] item: edges) {Integer first = item[0];Integer second = item[1];cache.get(first).add(second);cache.get(second).add(first);
    }
    

    然后通过深度优先遍历查找每一条边符合题目的个数.

    // 深度优先遍历
    // 当我们找到一个完整链路节点, 那么这些节点就不可能和剩下的节点有链接了
    // 假设找到某条无线边的所有节点为m个, 总结点数为n个. 那么相互不能到达的两两节点数为 m * (n - m)
    boolean[] visited = new boolean[n];
    long result  = 0;
    for(Integer key : cache.keySet()) {if(!visited[key]) {long count = dfs(key, cache, visited);result += (n - count) * count;}
    }
    

    对于深度优先遍历, 我们就没有啥好说的, 我们只需要按照常规方式进行递归即可.

    public int dfs(Integer key,  HashMap<Integer, ArrayList<Integer>> cache, boolean[] visited) {if(visited[key]) {return 0;}visited[key] = true;int count = 1;ArrayList<Integer> group = cache.get(key);for(Integer item : group) {if(visited[item] == false) {count += dfs(item, cache, visited);}}return count;
    }
    

    然后最后的计算结果因为所有的个数都计算了两遍, 我们需要除以2来求出最终的结果.

    return result/2;
    

    最后, 我们一起看一下整体的代码逻辑.

    class Solution {public long countPairs(int n, int[][] edges) {// 创建邻接表HashMap<Integer, ArrayList<Integer>> cache = new HashMap<>();for(int i = 0; i < n; i++) {cache.put(i, new ArrayList<>());}for(int[] item: edges) {Integer first = item[0];Integer second = item[1];cache.get(first).add(second);cache.get(second).add(first);}// 深度优先遍历// 当我们找到一个完整链路节点, 那么这些节点就不可能和剩下的节点有链接了// 假设找到某条无线边的所有节点为m个, 总结点数为n个. 那么相互不能到达的两两节点数为 m * (n - m)boolean[] visited = new boolean[n];long result  = 0;for(Integer key : cache.keySet()) {if(!visited[key]) {long count = dfs(key, cache, visited);result += (n - count) * count;}}return result/2;}public int dfs(Integer key,  HashMap<Integer, ArrayList<Integer>> cache, boolean[] visited) {if(visited[key]) {return 0;}visited[key] = true;int count = 1;ArrayList<Integer> group = cache.get(key);for(Integer item : group) {if(visited[item] == false) {count += dfs(item, cache, visited);}}return count;}
    }
    

    复杂度分析:

    • 时间复杂度: O(m + n), n 是总结点的个数, m是边数
    • 空间复杂度: O(m + n)

    结果如下所示.

相关文章:

2316. 统计无向图中无法互相到达点对数

2316. 统计无向图中无法互相到达点对数 难度: 中等 来源: 每日一题 2023.10.21 给你一个整数 n &#xff0c;表示一张 无向图 中有 n 个节点&#xff0c;编号为 0 到 n - 1 。同时给你一个二维整数数组 edges &#xff0c;其中 edges[i] [ai, bi] 表示节点 ai 和 bi 之间…...

Selenium定向爬取海量精美图片及搜索引擎杂谈

我自认为这是自己写过博客中一篇比较优秀的文章,同时也是在深夜凌晨2点满怀着激情和愉悦之心完成的。首先通过这篇文章,你能学到以下几点: 1.可以了解Python简单爬取图片的一些思路和方法 2.学习Selenium自动、测试分析动态网页和正则表达式的区别和共同点 …...

面试题—JAVA基础①

文章目录 1.Java面向对象有哪些特征&#xff1f;2.ArrayList和LinkedList有什么区别&#xff1f;3.Java接口和抽象类有哪些区别&#xff1f;4.hashcode和equals如何使用&#xff1f;5.try-catch6.局部变量和实例变量7.String、StringBuffer、StringBuilder 的区别&#xff1f;8…...

naive-ui的n-data-table标签奇特bug记录

具体参考之前的博文&#xff1a;vueday02——使用naive-ui做一个ACM看榜-CSDN博客 具体代码在这里面 原因&#xff1a;在本地运行的时候&#xff0c;datatable里面使用列表渲染成字符串前端设置样式进行转换&#xff0c;但是在正式部署的时候&#xff0c;这个组件没有将其自动…...

微信小程序OA会议系统个人中心授权登入

在我们的完成微信登入授权之前&#xff0c;首先我们要完成我们前面所写的代码&#xff0c;如果有不会的大家可以去看以下我发的前面几个文章链接我发下面了&#xff0c;各位加油&#xff01; 微信小程序OA会议系统数据交互-CSDN博客 微信小程序会议OA系统其他页面-CSDN博客 …...

Git(一)Windows下安装及使用Git Bash

目录 一、简介1.1 什么是Git&#xff1f;1.2 Git 的主要特点1.3 什么是 Git Bash&#xff1f; 二、下载三、安装3.1 同意协议3.2 选择安装位置3.3 其他配置&#xff08;【Next】 即可&#xff09;3.4 安装完毕3.5 打开 Git Bash 官网地址&#xff1a; https://www.git-scm.com/…...

[AUTOSAR][诊断管理][ECU][$19] 读取ECU的DTC故障信息

一、简介 在车载诊断中常用的诊断协议有ISO 14229等&#xff0c;在协议中主要定义了诊断请求、诊断响应的报文格式及ECU该如何处理诊断请求的应用。其中ISO 14229系列标准协议定义了用于行业内诊断通信的需求规范&#xff0c;也就是UDS。UDS主要应用于OSI七层模型的第七层——…...

前端精度问题 (id 返回的和传给后端的不一致问题)

eg: 后端返回 id 10976458979374929 前端获取到的: 10976458979374928 原因: js 中 Number类型范围-2^53 1 到 2^53 - 1 Number.isSafeInteger()用来判断一个整数是否落在这个范围之内。 java中 Long 类型的取值范围是-2^63 1 到 2^63 - 1, 比JavaScript中大很多&#xff0…...

WPF Material Design UI框架

前言 Material Design in xaml 是开源免费的ui框架&#xff0c;工控软件主打的就是简单界面。 以下简称MD 相关资源 MaterialDesignInXamlToolkit Github 地址 MD 快速启动 MD 案例压缩包 MD 框架使用 启动环境配置 安装Nuget包 App.xaml 配置 <Application x:Class&qu…...

C语言求 3*3 矩阵对角线之和

完整代码&#xff1a; // 求 3*3 矩阵对角线之和 #include<stdio.h>int main() {int n3;int arr[3][3];// 输入矩阵printf("请输入矩阵的元素:\n");for (int i 0; i < n; i){for (int j 0; j < n; j){scanf("%d", &arr[i][j]);}}int su…...

缓存分片中的哈希算法与一致性哈希算法

什么是缓存分片 在高并发场景下&#xff0c;缓存往往成为了瓶颈。这时候&#xff0c;我们可以通过缓存数据分片的方式来解决问题。所谓缓存数据分片&#xff0c;就是将缓存数据按照一定的规则分成多个片段&#xff0c;每个片段由不同的缓存节点负责。这样做有两个好处&#xf…...

线框图软件:Balsamiq Wireframes mac中文介绍

Balsamiq Wireframes mac是一款用于创建线框图的软件工具。它旨在帮助用户快速制作出清晰、简洁的界面原型&#xff0c;以便在设计和开发过程中进行协作和沟通。 Balsamiq Wireframes具有简单直观的用户界面&#xff0c;使用户能够快速添加和编辑各种用户界面元素&#xff0c;如…...

【wxWidgets实现透明wxPanel_核心实现_原创思想】

描述 wxWidgets 根本就没有实现过透明wxPanel容器,你设置wxTRANSPARENT_WINDOW,结果sorry 黑色,哈哈哈哈, 就是和你作对.想想当下那么漂亮的桌面, 背景, 透明, 特效.哎 悲哀啊,实现不了,就那死板的界面特性. 网上找了好久,也是乱七八糟,改底层代码还是算了吧,升级特要命.都是只…...

重大技术问题,iPhone 15 Pro Max面临“烧屏门”风波 | 百能云芯

近期&#xff0c;社交媒体平台上陆续涌现大量用户和数码博主就iPhone 15 Pro Max出现烧屏问题的投诉与评论。 烧屏问题是OLED屏幕常见的一个缺陷&#xff0c;这是由OLED屏幕发光机制引发的&#xff0c;OLED屏幕可视为由无数微小的灯泡-像素点构成&#xff0c;这些像素点可以独立…...

深度学习中的不确定性综述

领域学者&#xff1a; http://www.gatsby.ucl.ac.uk/~balaji/ 论文标题&#xff1a; A Survey of Uncertainty in Deep Neural Networks 论文链接&#xff1a; https://arxiv.org/pdf/2107.03342.pdf 概要 在过去的十年中&#xff0c;神经网络几乎遍及所有科学领域&#x…...

uni-app 小宠物 - 会说话的小鸟

在 template 中 <view class"container"><view class"external-shape"><view class"face-box"><view class"eye-box eye-left"><view class"eyeball-box eyeball-left"><span class"…...

POJ 3470 Walls 树上分桶

今天太晚了&#xff0c;代码先发上&#xff0c;思路明天说吧。 陌上花开&#xff0c;树上分桶 #include <iostream> #include <algorithm> #include <vector> using namespace std; /*** 对于y1不等于y2的&#xff0c;可以用datC求解&#xff0c;对于x1不等…...

HIVE-17824,删除hdfs分区信息,清理metastore元数据

当手动删除HDFS 分区数据时,但是并没有清理 Hive 中的分区元数据,删除操作无法自动更新hive分区表元数据。也就是从hdfs中删除大量分区数据,并没有执行如下命令: alter table drop partition commad 从hive 3.0.0开始可以使用MSCK的方法发现新分区或删除丢失的分区; MSCK [REPA…...

Python深度学习进阶与应用丨注意力(Attention)机制、Transformer模型、生成式模型、目标检测算法、图神经网络、强化学习详解等

目录 第一章 注意力&#xff08;Attention&#xff09;机制详解 第二章 Transformer模型详解 第三章 生成式模型详解 第四章 目标检测算法详解 第五章 图神经网络详解 第六章 强化学习详解 第七章 深度学习模型可解释性与可视化方法详解 更多应用 近年来&#xff0c;伴…...

javaEE -6(10000详解文件操作)

一&#xff1a;认识文件 我们先来认识狭义上的文件(file)。针对硬盘这种持久化存储的I/O设备&#xff0c;当我们想要进行数据保存时&#xff0c;往往不是保存成一个整体&#xff0c;而是独立成一个个的单位进行保存&#xff0c;这个独立的单位就被抽象成文件的概念&#xff0c…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...