A_搜索(A Star)算法
A*搜索(A Star)
不同于盲目搜索,A算法是一种启发式算法(Heuristic Algorithm)。
上文提到,盲目搜索对于所有要搜索的状态结点都是一视同仁的,因此在每次搜索一个状态时,盲目搜索并不会考虑这个状态到底是有利于趋向目标的,还是偏离目标的。
而启发式搜索的启发二字,看起来是不是感觉这个算法就变得聪明一点了呢?正是这样,启发式搜索对于待搜索的状态会进行不同的优劣判断,这个判断的结果将会对算法搜索顺序起到一种启发作用,越优秀的状态将会得到越高的搜索优先级。
我们把对于状态优劣判断的方法称为启发函数*,通过给它评定一个搜索代价来量化启发值。
启发函数应针对不同的使用场景来设计,那么在拼图的游戏中,如何评定某个状态的优劣性呢?粗略的评估方法有两种:
- 可以想到,某个状态它的方块位置放对的越多,说明它能复原目标的希望就越大,这个状态就越优秀,优先选择它就能减少无效的搜索,经过它而推演到目标的代价就会小。所以可求出某个状态所有方块的错位数量来作为评估值,错位越少,状态越优秀。
- 假如让拼图上的每个方块都可以穿过邻近方块,无阻碍地移动到目标位置,那么每个不在正确位置上的方块它距离正确位置都会存在一个移动距离,这个非直线的距离即为曼哈顿距离(Manhattan Distance),我们把每个方块距离其正确位置的曼哈顿距离相加起来,所求的和可以作为搜索代价的值,值越小则可认为状态越优秀。
其实上述两种评定方法都只是对当前状态距离目标状态的代价评估,我们还忽略了一点,就是这个状态距离搜索开始的状态是否已经非常远了,亦即状态结点的深度值。
在拼图游戏中,我们进行的是路径搜索,假如搜索出来的一条移动路径其需要的步数非常多,即使最终能够把拼图复原,那也不是我们希望的路径。所以,路径搜索存在一个最优解的问题,搜索出来的路径所需要移动的步数越少,就越优。
A*算法对某个状态结点的评估,应综合考虑这个结点距离开始结点的代价与距离目标结点的代价。总估价公式可以表示为:
f(n) = g(n) + h(n)
n 表示某个结点,f(n) 表示对某个结点进行评价,值等于这个结点距离开始结点的已知价 g(n) 加上距离目标结点的估算价 h(n)。
为什么说 g(n) 的值是确定已知的呢?在每次生成子状态结点时,子状态的 g 值应在它父状态的基础上 +1,以此表示距离开始状态增加了一步,即深度加深了。所以每一个状态的 g 值并不需要估算,是实实在在确定的值。
影响算法效率的关键点在于 h(n) 的计算,采用不同的方法来计算 h 值将会让算法产生巨大的差异。
- 当增大
h值的权重,即让h值远超g值时,算法偏向于快速寻找到目标状态,而忽略路径长度,这样搜索出来的结果就很难保证是最优解了,意味着可能会多绕一些弯路,通往目标状态的步数会比较多。 - 当减小
h值的权重,降低启发信息量,算法将偏向于注重已搜深度,当h(n)恒为0时,A*算法其实已退化为广度优先搜索了。(这是为照应上文的方便说法。严谨的说法应是退化为 Dijkstra 算法,在本游戏中,广搜可等同为 Dijkstra 算法,关于 Dijkstra 这里不作深入展开。)
以下是拼图状态结点 PuzzleStatus 的估价方法,在实际测试中,使用方块错位数量来作估价的效果不太明显,所以这里只使用曼哈顿距离来作为 **h(n)** 估价,已能达到不错的算法效率。
/// 估算从当前状态到目标状态的代价
- (NSInteger)estimateToTargetStatus:(id<JXPathSearcherStatus>)targetStatus {PuzzleStatus *target = (PuzzleStatus *)targetStatus;// 计算每一个方块距离它正确位置的距离// 曼哈顿距离NSInteger manhattanDistance = 0;for (NSInteger index = 0; index < self.pieceArray.count; ++ index) {// 略过空格if (index == self.emptyIndex) {continue;}PuzzlePiece *currentPiece = self.pieceArray[index];PuzzlePiece *targetPiece = target.pieceArray[index];manhattanDistance +=ABS([self rowOfIndex:currentPiece.ID] - [target rowOfIndex:targetPiece.ID]) +ABS([self colOfIndex:currentPiece.ID] - [target colOfIndex:targetPiece.ID]);}// 增大权重return 5 * manhattanDistance;
}
状态估价由状态类自己负责,A算法只询问状态的估价结果,并进行 f(n) = g(n) + h(b) 操作,确保每一次搜索,都是待搜空间里代价最小的状态,即 f 值最小的状态。
那么问题来了,在给每个状态都计算并赋予上 **f** 值后,如何做到每一次只取 **f** 值最小的那个?
前文已讲到,所有扩展出来的新状态都会放入开放队列中的,如果 A算法也像广搜那样只放在队列尾,然后每次只取队首元素来搜索的话,那么 f 值完全没有起到作用。
事实上,因为每个状态都有 f 值的存在,它们已经有了优劣高下之分,队列在存取它们的时候,应当按其 f 值而有选择地进行入列出列,这时候需要用到优先队列(Priority Queue),它能够每次出列优先级最高的元素。
以下是 A*搜索算法的代码实现:
- (NSMutableArray *)search {if (!self.startStatus || !self.targetStatus || !self.equalComparator) {return nil;}NSMutableArray *path = [NSMutableArray array];[(id<JXAStarSearcherStatus>)[self startStatus] setGValue:0];// 关闭堆,存放已搜索过的状态NSMutableDictionary *close = [NSMutableDictionary dictionary];// 开放队列,存放由已搜索过的状态所扩展出来的未搜索状态// 使用优先队列JXPriorityQueue *open = [JXPriorityQueue queueWithComparator:^NSComparisonResult(id<JXAStarSearcherStatus> obj1, id<JXAStarSearcherStatus> obj2) {if ([obj1 fValue] == [obj2 fValue]) {return NSOrderedSame;}// f值越小,优先级越高return [obj1 fValue] < [obj2 fValue] ? NSOrderedDescending : NSOrderedAscending;}];[open enQueue:self.startStatus];while (open.count > 0) {// 出列id status = [open deQueue];// 排除已经搜索过的状态NSString *statusIdentifier = [status statusIdentifier];if (close[statusIdentifier]) {continue;}close[statusIdentifier] = status;// 如果找到目标状态if (self.equalComparator(self.targetStatus, status)) {path = [self constructPathWithStatus:status isLast:YES];break;}// 否则,扩展出子状态NSMutableArray *childStatus = [status childStatus];// 对各个子状进行代价估算[childStatus enumerateObjectsUsingBlock:^(id<JXAStarSearcherStatus> _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) {// 子状态的实际代价比本状态大1[obj setGValue:[status gValue] + 1];// 估算到目标状态的代价[obj setHValue:[obj estimateToTargetStatus:self.targetStatus]];// 总价=已知代价+未知估算代价[obj setFValue:[obj gValue] + [obj hValue]];// 入列[open enQueue:obj];}];}NSLog(@"总共搜索: %@", @(close.count));return path;
}
可以看到,代码基本是以广搜为模块,加入了 f(n) = g(n) + h(b) 的操作,并且使用了优先队列作为开放表,这样改进后,算法的效率是不可同日而语。

相关文章:
A_搜索(A Star)算法
A*搜索(A Star) 不同于盲目搜索,A算法是一种启发式算法(Heuristic Algorithm)。 上文提到,盲目搜索对于所有要搜索的状态结点都是一视同仁的,因此在每次搜索一个状态时,盲目搜索并不会考虑这个状态到底是有利于趋向目标的&#x…...
Tinywebserve学习之linux 用户态内核态
一.CPU指令集权限 指令集是实现CPU实现软件指挥硬件执行的媒介,具体来说每一条汇编语句都对应了一条CPU指令,而非常多的CPU指令再一起组成一个甚至多个集合,指令的集合叫CPU指令集; 因为CPU指令集可以操纵硬件,会造成…...
AI之浅谈
随着ChatGPT的爆火,AI的应用也随之遍地开花,国内国外的各种大模型也都陆续推出,AI的本质是进行数据的分析和整理,其背后的资源来自于互联网时代所积累的大数据基础,这也是深度学习的结果,AI具有不眠不休的特…...
20231024后端研发面经整理
1.如何在单链表O(1)删除节点? 狸猫换太子 2.redis中的key如何找到对应的内存位置? 哈希碰撞的话用链表存 3.线性探测哈希法的插入,查找和删除 插入:一个个挨着后面找,知道有空位 查找:一个个挨着后面找…...
【前段基础入门之】=>CSS3新增渐变颜色属性
导语: CSS3 新增了,渐变色 的解决方案,这使得我们可以绘制出更加生动的炫酷的的配色效果 线性渐变 多个颜色之间的渐变, 默认从上到下渐变 background-image: linear-gradient(red,yellow,green); /*默认从上到下渐变*/默认从上…...
深入浅出排序算法之归并排序
目录 1. 归并排序的原理 1.1 二路归并排序执行流程 2. 代码分析 2.1 代码设计 3. 性能分析 4. 非递归版本 1. 归并排序的原理 “归并”一词的中文含义就是合并、并入的意思,而在数据结构中的定义是将两个或者两个以上的有序表组合成一个新的有序表。 归并排序…...
opencv dnn模块 示例(19) 目标检测 object_detection 之 yolox
文章目录 0、前言1、网络介绍1.1、输入1.2、Backbone主干网络1.3、Neck1.4、Prediction预测输出1.4.1、Decoupled Head解耦头1.4.2、Anchor-Free1.4.3、标签分配1.4.4、Loss计算 1.5、Yolox-s、l、m、x系列1.6、轻量级网络研究1.6.1、轻量级网络1.6.2、数据增强的优缺点 1.7、Y…...
微信小程序阻止返回事件
需求场景 当在一个表单页面 填写了很多数据,或者编辑页面数据发生变动之后,这时候返回上一个页面需要提醒用户是否返回的弹框 实现方法一(ios会存在一定的问题) 在onLoad生命周期里 注册 wx.enableAlertBeforeUnload({message: "您内容已更新,还没保存,确定要退出吗?&…...
YOLOv7改进:新颖的上下文解耦头TSCODE,即插即用,各个数据集下实现暴力涨点
💡💡💡本文属于原创独家改进:上下文解耦头TSCODE,进行深、浅层的特征融合,最后再分别输入到头部进行相应的解码输出,实现暴力暴力涨点 上下文解耦头TSCODE| 亲测在多个数据集实现暴力涨点,对遮挡场景、小目标场景提升也明显; 收录: YOLOv7高阶自研专栏介绍: …...
Unity中Shader阴影的接收
文章目录 前言一、阴影接受的步骤1、在v2f中添加UNITY_SHADOW_COORDS(idx),unity会自动声明一个叫_ShadowCoord的float4变量,用作阴影的采样坐标.2、在顶点着色器中添加TRANSFER_SHADOW(o),用于将上面定义的_ShadowCoord纹理采样坐标变换到相应的屏幕空间…...
✔ ★【备战实习(面经+项目+算法)】 10.22学习时间表(总计学习时间:4.5h)(算法刷题:7道)
✔ ★【备战实习(面经项目算法)】 坚持完成每天必做如何找到好工作1. 科学的学习方法(专注!效率!记忆!心流!)2. 每天认真完成必做项,踏实学习技术 认真完成每天必做&…...
Amazonlinux2023(AL2023)获取metadata
今年AWS发布了新的Amazonlinux2023版本,其中获取metadata元数据方式发生了一点改变。 早些时候,在 Amazon Linux 2 中,使用以下命令获取实例元数据 http://169.254.169.254/latest/meta-data/ 具体可以获取的元数据类别可以查阅如下aws官方…...
C++(Chapter 3)
C(三) 1.引用 1.引用的概念 引用的概念:引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。 引用的语法:类型& 引用变量名(对象名) 引用实体 ; 例如: #i…...
优化单元测试效率:Spring 工程启动耗时统计
相关文章: Java Agent 的简单使用 本文相关代码地址:https://gitee.com/dongguabai/blog 单元测试在软件项目的可持续发展中扮演着不可或缺的角色,这一点毫无疑问。不久前,公司大佬在内部分享时也提到过:单元测试是…...
华纳云:连接mysql出现2059错误怎么解决
MySQL连接错误2059通常表示MySQL服务器拒绝了连接。这种错误可能由多种原因引起,以下是一些可能的解决方法: 检查MySQL服务器是否正在运行: 确保MySQL服务器正在正常运行。您可以使用以下命令检查MySQL服务器的状态: systemctl st…...
零基础Linux_22(多线程)线程控制和和C++的多线程和笔试选择题
目录 1. 线程控制 1.1 线程创建(pthread_create) 1.2 线程结束(pthread_exit) 1.3 线程等待(pthread_join) 1.4 线程取消(pthread_cancel结束) 1.5 线程tid(pthread_self()) 1.6 线程局部存储(__thread) 1.7 线程分离(pthread_detach) 2. C的多线程 3. 笔试选择题 答…...
docker版本的Jenkins安装与更新技巧
因为jenkins/jenkins镜像默认带的jenkins版本比较低,导致安装完以后,很多插件因为版本问题无法安装。以下是最权威,最方便的安装教程。 1. 创建本地挂载目录 mkdir -p /mnt/dockerdata/jenkins/home/2. 修改挂载目录权限 chown -R 1000:10…...
[C++]3.类和对象下(this指针补充)+ 类和对象中构造函数和析构函数。
类和对象下(this指针补充) 类和对象中构造函数和析构函数 一.this补充:1.概念总结:2.两个问题: 二.构造函数和析构函数:一.类的默认构造:1.初始化和清理:2.拷贝复制:3.取…...
OpenLDAP LDIF详解
手把手一步步搭建LDAP服务器并加域 有必要理解的概念LDAPWindows Active Directory 服务器配置安装 OpenLDAP自定义安装修改对象(用户和分组等)修改olcSuffix 和 olcRootDN 属性增加olcRootPW 属性修改olcAccess属性验证新属性值 添加对象(用…...
Leetcode.33 搜索旋转排序数组
题目链接 Leetcode.33 搜索旋转排序数组 mid 题目描述 整数数组 n u m s nums nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前, n u m s nums nums 在预先未知的某个下标 k ( 0 ≤ k < n u m s . l e n g t h )…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
