HJ3 明明的随机数
牛客网:HJ3 明明的随机数
https://www.nowcoder.com/practice/3245215fffb84b7b81285493eae92ff0?tpId=37&tqId=21226&ru=/exam/oj

使用Go语言解题,最简单的方式:
解题一:
// 运行时间:5ms 占用内存:1180KB
package mainimport ("fmt""sort"
)func main() {var n intnum := make([]int, 0, n)_, _ = fmt.Scan(&n)set := make(map[int]struct{}, n)for i := 0; i < n; i++ {var tmp int_, _ = fmt.Scan(&tmp)if _, ok := set[tmp]; ok {continue // 重复值跳过}set[tmp] = struct{}{}num = append(num, tmp)}sort.Ints(num)for _, number := range num {fmt.Println(number)}
}
解题比较暴力,直接去重后再排序,思索后,觉得应该有所优化,从样例数据来看,数据量并不大,似乎可以用哈希表解题;
解题二:
// 运行时间:5ms 占用内存:1052KB
package mainimport ("fmt"
)func main() {var n int_, _ = fmt.Scan(&n)set := make([]int, 500, 500)for i := 0; i < n; i++ {var tmp int_, _ = fmt.Scan(&tmp)set[tmp] = tmp}for _, number := range set {if number != 0 {fmt.Println(number)}}
}
提交后,发现与第一种代码的运行时间和内存占比相差不大,开始查阅排行榜大哥代码,发现耗时原因出现在数据的录入上,修改代码重新提交
解题三:
//运行时间:4ms 占用内存:1308KB
package mainimport ("bufio""fmt""os""strconv"
)func main() {scan := bufio.NewScanner(os.Stdin)scan.Scan()if len(scan.Text())==0{return}n,_:=strconv.Atoi(scan.Text())set := make([]int, 500, 500)for i := 0; i < n; i++ {scan.Scan()tmpStr := scan.Text()tmp,_:=strconv.Atoi(tmpStr)set[tmp] = tmp}for _, number := range set {if number != 0 {fmt.Println(number)}}
}
运行时间缩短了1ms,内存涨了250kb,再次修改代码
解题四:
// 运行时间:4ms 占用内存:1096KB
package mainimport ("bufio""fmt""os""strconv"
)func main() {scan := bufio.NewScanner(os.Stdin)scan.Scan()if len(scan.Text())==0{return}n,_:=strconv.Atoi(scan.Text())set := make([]bool, 500, 500)for i := 0; i < n; i++ {scan.Scan()tmpStr := scan.Text()tmp,_:=strconv.Atoi(tmpStr)set[tmp] = true}for number, v := range set {if v == true {fmt.Println(number)}}
}
内存缩小,时间未变,不太理解,找到排行榜第一的代码进行提交,终于找到原因:

相同的代码,运行时间差距和内存差距,存在于牛客网的测评机,与代码无关,放弃挣扎;使用哈希表和sort在数据量不大的情况下,解决这道题,没有过多优化。
相关文章:
HJ3 明明的随机数
牛客网:HJ3 明明的随机数 https://www.nowcoder.com/practice/3245215fffb84b7b81285493eae92ff0?tpId37&tqId21226&ru/exam/oj 使用Go语言解题,最简单的方式: 解题一: // 运行时间:5ms 占用内存:…...
如何恢复u盘删除文件?2023最新分享四种方法恢复文件
U盘上删除的文件怎么恢复?使用U盘存储文件是非常方便的,例如:在办公的时候,会使用U盘来存储网络上查找到的资料、产品说明等。在学习的时候,会使用U盘来存储教育机构分享的教学视频、重点知识等。而随着U盘存储文件的概…...
8.稳定性专题
1. anr https://code84.com/303466.html 一句话,规定的时间没有干完要干的事,就会发生anrsystem_anr场景 input 5sservice 前台20s 后台60scontentprivider超市 比较少见 原因 主线程耗时 复杂layout iobinder对端block子线程同步锁blockbinder被占满导…...
基于51单片机的四种波形信号发生器仿真设计(仿真+程序源码+设计说明书+讲解视频)
本设计 基于51单片机信号发生器仿真设计 (仿真程序源码设计说明书讲解视频) 仿真原版本:proteus 7.8 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0015 这里写目录标题 基于51单片机信号发生…...
不同网段的IP怎么互通
最近在整理工作的时候发现一个不同网段无法互通的问题,就是我们大家熟知的一级路由和二级路由无法互通的问题。由于需要记录整个过程的完整性,这里也需要详细记录下整个过程,明白的人不用看,可以直接跳过,到解决方法去…...
C#序列化与反序列化详解
在我们深入探时C#序列化和反序列化,之前我们先要明白什么是序列化,它又称串行化,是.ET运行时环境用来支持用户定义 类型的流化的机制。序列化就是把一个对象保存到一个文件或数据库字段中去,反序列化就是在适当的时候把这个文件再…...
如何在k8s的Java服务镜像(Linux)中设置中文字体
问题描述:服务是基于springboot的Java服务,在项目上是通过Maven的谷歌插件打包,再由k8s部署的。k8s的镜像就是一个Java服务,Java服务用到了中文字体。 解决这个问题首先需要搞定镜像字体的问题。有很多类似的解决方案,…...
CT 扫描的 3D 图像分类-预测肺炎的存在
介绍 此示例将展示构建 3D 卷积神经网络 (CNN) 所需的步骤,以预测计算机断层扫描 (CT) 扫描中是否存在病毒性肺炎。2D CNN 通常用于处理 RGB 图像(3 通道)。3D CNN 就是 3D 的等价物:它以 3D 体积或一系列 2D 帧(例如 CT 扫描中的切片)作为输入,3D CNN 是学习体积数据表…...
整合管理案例题分析
本文摘自江山老师文档 五个过程 制定项目章程 1.没有写项目章程,没有颁布 2.项目经理自己颁布项目章程 3.项目经理修改项目章程 4.项目章程授权不够,项目经理没有权限,下面的人不听话 5.项目章程的内容不完整 制定项目管理计划 1.项目…...
mysql4
创建表并插入数据: 字段名 数据类型 主键 外键 非空 唯一 自增 id INT 是 否 是 是 否 primary key name VARCHAR(50) 否 否 是 否 否 not null glass VARCHAR(50) 否 否 是 否 否 not nullsch 表内容 id name glass 1 xiaommg glass 1 2 xiaojun …...
Python深度学习实战-基于tensorflow原生代码搭建BP神经网络实现分类任务(附源码和实现效果)
实现功能 前面两篇文章分别介绍了两种搭建神经网络模型的方法,一种是基于tensorflow的keras框架,另一种是继承父类自定义class类,本篇文章将编写原生代码搭建BP神经网络。 实现代码 import tensorflow as tf from sklearn.datasets import…...
PDF 文档处理:使用 Java 对比 PDF 找出内容差异
不论是在团队写作还是在个人工作中,PDF 文档往往会经过多次修订和更新。掌握 PDF 文档内容的变化对于管理文档有极大的帮助。通过对比 PDF 文档,用户可以快速找出文档增加、删除和修改的内容,更好地了解文档的演变过程,轻松地管理…...
压敏电阻有哪些原理?|深圳比创达电子EMC
压敏电阻是一种金属氧化物陶瓷半导体电阻器。它以氧化锌(ZnO)为基料,加入多种(一般5~10种)其它添加剂,经压制成坯体,高温烧结,成为具有晶界特性的多晶半导体陶瓷组件。氧化锌压敏电阻器的微观结构如下图1所示。 氧化锌…...
【计算机网络笔记】Web应用之HTTP协议(涉及HTTP连接类型和HTTP消息格式)
系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…...
IDEA 2023.2.2 使用 Scala 编译报错 No scalac found to compile scala sources
一、问题 scala: No scalac found to compile scala sources 官网 Bug 链接 二、临时解决方案 Incrementality Type 先变成 IDEA 类型 Please go to Settings > Build, Execution, Deployment > Compiler > Scala Compiler and change the Incrementality type to …...
C51--PWN-舵机控制
PWM开发sg90舵机 1、简介 PWM(pulse width modulation)是脉冲宽度调制缩写。 通过对一系列脉冲的宽度进行调制,等效出所需要的波形(包含形状以及幅值)。对模拟信号电平进行数字编码,通过调节占空比的变化来…...
electron27+react18集成搭建跨平台应用|electron窗口多开
基于Electron27集成React18创建一个桌面端exe程序。 electron27-vite4-react18基于electron27结合vite4构建工具快速创建react18跨端应用实践。 版本列表 "vite": "^4.4.5" "react": "^18.2.0" "electron": "^27.0.1&…...
【k8s】kubeadm安装k8s集群
一、环境部署 master192.168.88.10docker、kubeadm、kubelet、kubectl、flannelnode01192.168.88.20docker、kubeadm、kubelet、kubectl、flannelnode02192.168.88.30docker、kubeadm、kubelet、kubectl、flannelhub.lp.com192.168.88.40 docker、docker-compose harbor-offli…...
三、虚拟机的迁移和删除
虚拟机的本质就是文件(放在文件夹的)。因此虚拟机的迁移很方便,可以把安装好的虚拟系统这个文件夹整体拷贝或者剪切到另外的位置使用。删除也很简单,使用vmware进行移除,再点菜单->从磁盘删除即可,或者手动删除虚拟系统对应的文…...
RabbitMQ的交换机(原理及代码实现)
1.交换机类型 Fanout Exchange(扇形)Direct Exchange(直连)opic Exchange(主题)Headers Exchange(头部) 2.Fanout Exchange 2.1 简介 Fanout 扇形的,散开的࿱…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
