当前位置: 首页 > news >正文

2016年亚太杯APMCM数学建模大赛C题影视评价与定制求解全过程文档及程序

2016年亚太杯APMCM数学建模大赛

C题 影视评价与定制

原题再现

  中华人民共和国成立以来,特别是政治改革和经济开放后,随着国家经济的增长、科技的发展和人民生活水平的提高,中国广播电视媒体取得了显著的成就,并得到了迅速的发展。截至目前,中国广播电视传媒已经为未来产业发展奠定了良好的基础。

  2012年,中国共制作了893部电影,总票房170.73亿元,比上年增长30.18%。其中,中国国产电影票房达到82.73亿元,占全年总票房的48.46%。这是自2003年以来,中国国产电影首次被进口电影击败。2012年2月,中美双方就WTO电影相关问题达成《WTO谅解备忘录》,并决定增加进口电影配额。在最初的20部进口电影配额之外,还将有14部高科技格式的美国电影。票房分账的比例也从之前的17.5%上升到了25%。国内电影市场现在处境不佳。

  美国的文化产业,也就是所谓的版权产业,占GDP的10%,而中国只有不到3%。如今,在中国,一集电视节目的价格可以达到7位数,未来可能达到8位数。这也符合中国的经济发展。富裕经济后对文化和娱乐的需求增加,将推动该行业快速增长,成为未来增长最快的企业之一。

  在“十二五”期间,中国将大力发展影视制作、文化创作、娱乐表演等七大重点文化产业。在此期间,中国影视产业将迎来一个重要的战略机遇期;政府将加大扶持力度,为中国影视业创造良好的营商环境。中国电影奖委员会将在未来5年保持每年500部电影的产量。2014年,中国电影市场票房将突破300亿元,预计观影人数将达到11.12亿,相当接近全国总人口。此外,影院将变得更加多样化;小众电影和艺术电影也将有自己的放映空间。国务院《电影产业繁荣发展促进指导意见》指出,到2015年底,通过改革创新、加大投资、加快发展,我国将建立健全公平的市场竞争、企业自主经营的电影产业经营体系、市场运作、企业管理、,政府采购,以及电影公共服务体系的公共利益。

  当前的中国电视市场竞争激烈,充满了不同的风格和话题。虽然每年的电视剧产量仍然很高,但电视台并没有太多的购买欲望,这导致了电视剧供过于求。据统计,每年有一半以上的电视作品在没有买家的情况下被浪费,造成了巨大的资源浪费。数量从来都不是电视剧的问题,但质量一直是我们需要解决的问题。如何降低成本,摆脱草率粗暴的电视投资,决定着电视剧的未来发展。未来电视剧之间的竞争将是一场质量竞赛。只有保证电视剧的质量,才能获得最大的回报。

  同时,利用2014年的大数据作为测试电视市场的分析工具也取得了相当成功。虽然大数据无法创建脚本,但它可以非常精确地分析数据和预测。这可以应用于剧本编写、电视收视率预测、电视广告结果和电视剧购买。可以降低电视投资风险,提高剧本质量,预测观众反应,以确保最大效益。

  在影视剧市场中,如何对影视剧进行评价和定制等问题一直是一个制作过程中关注的焦点。现在请尝试使用数学建模方法来解决以下问题。

  问题1:根据排名指数对电视剧进行排名,并用附件1和附件2中的数据说出你的前十名。

  问题2:演员的受欢迎程度排名对电视剧的制作可能非常有用。请收集并使用相关数据作为基础,设计一个明星人气指数,并尝试通过givi来证明你的指数的可达性。

import requests
import re
import httplib
import md5
import urllib
import random
import json
def translate(q):appid = '20151113000005349'secretKey = 'osubCEzlGjzvw8qdQc41'httpClient = Nonemyurl = '/api/trans/vip/translate'fromLang = 'zh'toLang = 'en'salt = random.randint(32768, 65536)sign = appid+q+str(salt)+secretKeym1 = md5.new()m1.update(sign)sign = m1.hexdigest()myurl =
myurl+'?appid='+appid+'&q='+urllib.quote(q)+'&from='+fromLang+'&to='+
toLang+'&salt='+str(salt)+'&sign='+sign
try:httpClient = httplib.HTTPConnection('api.fanyi.baidu.com')httpClient.request('GET', myurl)#response HTTPResponseresponse = httpClient.getresponse()return json.loads(response.read())['trans_result'][0]['dst']except Exception, e:print efinally:if httpClient:httpClient.close()
tags =
['love','comedy','city','Suspense''Costume','idol','crime','history',
'war','Martial arts','Police bandit','Science Fiction']
def get_page(tag):url = "http://v.sogou.com/teleplay/list/style-%s+zone-内
地.html"%(tag)con = requests.get(url).textreturn con
def find_vedio(context):# print contextpattern = r'target=\"_blank\">(.*?)<\/a><\/div>'return re.findall(pattern, context)
def get_data(tags):out = []for tag in tags:data = {}vedios = find_vedio(get_page(tag))data[tag] = vediosout.append(data)return out
if __name__ == '__main__':data = get_data(tags)for tag in data:key = tag.keys()[0]# print key
vedios = tag.values()[0]for vedio in vedios:# print data so that can be covertd to csv format.print translate(key)+','+translate(vedio.encode('utf-8'))

整体求解过程概述(摘要)

  明星和戏剧问题基于大数据。为了解决这些问题,从互联网上搜索可靠的数据,过滤掉坏值,确定权重并给出预测具有重要意义。
  首先,关于电视剧排名,我们选择电视剧评分、每部电视剧的评论家数量和电视剧集数量作为前三个重要指标来判断最终排名。为了找出三个指标中最合理的权重,我们使用TOPSIS法来计算最佳权重。最后,当直接计算指标之间的关系不明确时,基于灰色关联度和单层次综合评价给出了剧集的排名。
  其次,我们认为评判明星人气的指标是丰富的、非官方的,因此Apriori算法可以用来过滤不重要的指标,只保留高权重的指标。通过遍历从互联网上收集的多个数据,我们得到了最终的频繁n项集,其中n项集是最重要的索引。然后利用主成分分析法得到相关指标的权重。除此之外,还应考虑特殊情况,例如由花边新闻在短时间内引起的剧烈变化。最后,我们将基于我们的指数的排名与官方网站上的排名进行比较,发现大致相等。
  第三,为了建立一个新的团队来创建新产品,我们可以使用爬虫从互联网上搜索到的数据,如点击率、评论家、主演、制作团队等。为了过滤掉不重要的指标,可以使用逐步回归方法,然后我们可以得到标准化。通过这个等式,每个指数都将对应一个权重,该权重衡量对最终指数的贡献。然后,将导出的排名与官方排名进行比较,以获得可信度,并判断该指数是可接受的。根据最终指标,描述一个理想的生产团队。
  最后,从观众的浏览历史和每个频道的评分中获得最合适的推荐。这里使用LDA算法,找出主要趋势和主要类型的历史。赋值主要取决于历史数据具有不同类型的概率,然后通过余弦计算找到拟合度最高的数据。使用标准化后的数据,我们证明了该模型的可信度高达93.2%。此外,当依赖于评级时,该模型也是可靠的。
  每个模型都经过了来自现实的数据测试,这些数据来自互联网,由Python中的爬虫搜索。

模型假设:

  1) 数据可以正确反映受欢迎程度。没有恶意提高知名度的网络雇佣兵。
  2) 所有以明星或戏剧名字命名的论坛都在谈论这个主题。论坛上有所有相关的帖子
  3) 知名网站的排名没有商业猜测。所有的排名都依赖于现实,而且必须是客观的。
  4) 这些模型具有通用性。因为来自互联网的数据不可能包含所有的明星和剧集。通过计算足够大的数据规模来考虑。衍生出的模型可以适用于所有的明星和戏剧。而且错误太小,无法组织。

问题重述:

  当前的中国电视市场竞争激烈,充满了不同的风格和话题。虽然每年的电视剧产量仍然很高,但电视台并没有太多的购买欲望,这导致了电视剧供过于求。数量从来都不是电视剧的问题,但质量一直是我们需要解决的问题。如何降低成本,摆脱草率粗暴的电视投资,决定着电视剧的未来发展。
  同时,利用2014年的大数据作为测试电视市场的分析工具也取得了相当成功。虽然大数据无法创建脚本,但它可以非常精确地分析数据和预测。这可以应用于剧本编写、电视收视率预测、电视广告结果和电视剧购买。可以降低电视投资风险,提高剧本质量,预测观众反应,以确保最大效益。
  在影视剧市场中,如何对影视剧进行评价和定制等问题一直是一个制作过程中关注的焦点。现在请尝试使用数学建模方法来解决以下问题。
  根据排名指数对电视剧进行排名,并说出你的前十名。
  请收集并使用相关数据作为基础,设计一个明星人气指数,并通过今年的真实例子来证明你的指数的可及性。
  描述一个理想的制作团队,包括制片人和演员。试着用一个真实的例子来证明你的观点。
  通过观看历史和节目收视率,找到最适合观众和每个地方电视台的剧本内容。收集相关数据,使用数学建模方法提供解决方案,并使用真实的例子来证明你的观点。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
import requests
import re,json
def get_stars(url):strs = '''<span class="rank_left_name" person-id="529">Liyin 
Zhao</span><span clas'''\'''s="rank_left_value"><b class="rlv_gray">9.0814</b>'''req = requests.get(url).textpattern = r"<span.*?personid=\"\d*?\">(.*?)</span>.*?\">([\d,\.]*?)</b>"out = re.findall(pattern,req)for i in out:print i[0] + "," + i[1] # print stars so that wo can covert 
the file to a csv format.return out # return the list of stars.
def get_rank():url_1 = "http://www.xunyee.cn/rank-person-index-3.html"get_stars(url_1)length = []for i in range(2,35):url_2 = "http://www.xunyee.cn/rank-person-index-3-
page-%d.html"%(i)length.append(get_stars(url_2))return length
# the stars list
stars = [u'Zhao Liying', u'Li Yifeng', u'Lay', u'Yang Zi', u'Ma 
Tianyu', u'Yang Yang', u'Hu Ge', u'William Chan',u'Liu Tao', u'Yang Mi', u'Victoria', u'Zheng Shuang', u'Wang 
Kai', u'Tang Yan', u'Ruby Lin', u'Liu Shishi',u'Guan Xiaotong', u'Wang Ziwen', u'Wallace Huo', u'Zhang Yishan',
u'Zhangruoyun', u"Zhang Tian'ai", u'Di Ali Gerba',u'Joker', u'Cheney Chen', u'Fan Bingbing', u'Maggie Jiang',
u'Zhang Han', u'Joe Chen', u'Gulnazar', u'Honglei Sun',
u'Jiang Xin', u'Wu Lei', u'Zhang Meng', u'Hawick Lau', u'Mark', u'Qin 
Junjie', u'Juen-Kai Wang', u'Angela Baby', u'Tansongyun', u'Chenhe', u'Liu Yifei', u'YoonA', u'Song Joong 
Ki', u'Yuan Wang', u'Tangyixin', u'Wu You', u'William Feng',u'Jiangjinfu', u'Through', u'Jin Dong', u'Liuhaoran', u'Li 
Zhongshuo', u'Dongyu Zhou', u'Jackson Yi', u'Zhong Hanliang',u'Kan Kiyoko', u'Deng Chao', u'Luyi Zhang', u'Li Chen', u'Sun 
Li', u'Guo Degang', u'Liu Yan', u'Lu Yi', u'Huang Lei',u'Zhangmingen', u'Luhan', u'Ju Jingyi', u'Cheng Yi', u'Ji Chang 
Wook', u'Xiaozhan', u'Zheng Kai', u'Mao Zijun',u'Huang Xiaoming', u'Yu Hewei', u'Hai Qing', u'Luo Jin', u'Qi 
Wei', u'Huang Bo', u'Li Qin', u'Wu Xiubo',u'Xinyi Zhang', u'Qing Jia', u'Huang Haibing', u'Yuan Shanshan',
u'Jia Nailiang', u'Du Chun', u'Cary Woodworth',u'Zu Feng', u'Baishu', u'Qiao xin2', u'Zhao Wei', u'Liyan Tong',
u'Yuan Hong', u'Chen Xiao', u'Maoxiaotong',u'Qiao Zhenyu', u'Ady Ann', u'Gao Yuanyuan', u'Yang Shuo', u'Chen 
Xiang', u'Zheng Yin', u'Hye gyo Song', u'Nicky Wu',u'Wujiacheng', u'Chen yao1', u'Lee Jun-ki', u'Xiao Che', u'Zhang 
Yi', u'Huyunhao', u'Joe Cheng', u'Gilbert air',u'Baoqiang Wang', u'Janine Chang', u'Jin Chen', u'For the',
u'Eddie Peng', u'Sheenah', u'Hongchen', u'Wang Ou',u'Faye Yu', u'Sun Yi Chau', u'Pets Ceng', u'Fuchengpeng', u'Jing 
Bairan', u'Qiao Renliang', u'Show Luo', u'Wu Jing',u'Zhe Han Zhang', u'Handongjun', u'Liyitong', u'Alec Su',
u'Loura', u'Zhang Danfeng', u'Yan Ni', u'krystal',u'The white buildings', u'Guozifan', u'Houmengsha', u'Louis Koo',
u'Hubingqing', u'Park Shin Hye', u'Andy',u'Jimmy Lin', u'Pengchuyue', u'Rong Yang', u'Zifeng Zhhang',
u'Shuyaxin', u'Zhang Xinyu', u'Kris', u'Yangle',u'Yuanbingyan', u'Zhu Yawen', u'Maidina', u'Zhangxueying', u'Ng 
Cheuk Hai', u'Kelsey', u'Kyle Cui', u'Xuhaiqiao',u'Happy', u'Qian Wu', u'Jay Chou', u'Wang Xiaochen', u'Li 
Xiaoran', u'Liu Ye', u'Zhao Lei', u'Xu Doudou', u'Jiro Wang',u'Yanzidong', u'Ouyang Nana', u'Gao Yixiang', u'Benny Chan',
u'Song Jia', u'Jordan Chan', u'Bea Hayden', u'Michelle Chen',u'Yan Yi wide', u'Stephen Chow', u'Alyssa Chia', u'Ying Er',
u'Raymond Lam', u'Bosco Wong', u'Xiong Naijin', u'Hu Bing',u'Bing Shao', u'Angela Chang', u'Anita Yuen', u'Baijingting',
u'Vincent Chiao', u'Gillian Chung', u'JJ Lin', u'iu', u'Xu',u'Kenny', u'Charmaine Sheh', u'Angie Chiu', u'Tsung-Han Lee',
u'Kim Su Hyon', u'Zihan Chen', u'Yu-chi Chen', u'Ariel Lin',
u'Wang Yuexin', u'Du Haitao', u'Jiangzile', u'Chenruoxuan', u'Ma 
Sichun', u'Pubaojian', u'Niujunfeng', u'Peter Ho',u'Gujiacheng',
]
def getFansAndPosts():pattern = r"<span 
class=\"card_menNum\">([\d,\,]*?)</span>[\w\W]*?<span 
class=\"card_infoNum\">([\d,\,]*?)</span>"for i in stars:url = "http://tieba.baidu.com/f?kw=%s"%(i)# print urlreq = requests.get(url).textresult = re.findall(pattern,req)[0]# print results so that wo can covert the file to a csv 
format.print result[0].replace(',','')+','+result[1].replace(',','')
def calc(ll):out = 0;for i in ll:out += int(i)return out/len(ll)
def getIndexAndMedia():for i in stars:try:get_media_url =
"http://index.so.com/index.php?a=soMediaJson&q=%s"%imedia =
json.loads(requests.get(get_media_url).text)['data']['media'].values(
)[0].split('|')[-300:-1]get_index_url =
"http://index.so.com/index.php?a=soIndexJson&q=%s"%iindex =
json.loads(requests.get(get_index_url).text)['data']['index'].values(
)[0].split('|')[-300:-1]# calculate the average num of Media Focusavg_media = calc(media)# calculate the average num of Index.
avg_index = calc(index)# print stars so that wo can covert the file to a csv format.print str(avg_index) + "," + str(avg_media)except Exception,e:print iexit(0)
if __name__ == '__main__':getIndexAndMedia()
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

相关文章:

2016年亚太杯APMCM数学建模大赛C题影视评价与定制求解全过程文档及程序

2016年亚太杯APMCM数学建模大赛 C题 影视评价与定制 原题再现 中华人民共和国成立以来&#xff0c;特别是政治改革和经济开放后&#xff0c;随着国家经济的增长、科技的发展和人民生活水平的提高&#xff0c;中国广播电视媒体取得了显著的成就&#xff0c;并得到了迅速的发展…...

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)

这篇博客是之前文章&#xff1a; Elasticsearch&#xff1a;使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation &#xff08;一&#xff09;Elasticsearch&#xff1a;使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation &#xff08;二&a…...

YOLOv7优化:渐近特征金字塔网络(AFPN)| 助力小目标检测

💡💡💡本文改进:渐近特征金字塔网络(AFPN),解决多尺度削弱了非相邻 Level 的融合效果。 AFPN | 亲测在多个数据集能够实现涨点,尤其在小目标数据集。 收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg.cn/tYI0c ✨✨✨前沿最新计算机顶会复现 🚀🚀🚀…...

J2EE项目部署与发布(Windows版本)

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《Spring与Mybatis集成整合》《Vue.js使用》 ⛺️ 越努力 &#xff0c;越幸运。 1.单机项目的部署 1.1们需要将要进行部署的项目共享到虚拟机中 在部署项目之前&#xff0c;我们先要检查一下…...

使用AWS Lambda函数的最佳实践!

主题 函数代码 函数配置 指标和警报 处理流 安全最佳实践 有关 Lambda 应用程序最佳实践的更多信息&#xff0c;请参阅 Serverless Land 中的 Application design。 函数代码 从核心逻辑中分离 Lambda 处理程序。这样您可以创建更容易进行单元测试的函数。在 Node.js 中…...

【计算机毕设小程序案例】基于SpringBoot的小演员招募小程序

前言&#xff1a;我是IT源码社&#xff0c;从事计算机开发行业数年&#xff0c;专注Java领域&#xff0c;专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 &#x1f449;IT源码社-SpringBoot优质案例推荐&#x1f448; &#x1f449;IT源码社-小程序优质案例…...

老年少女测试媛入职感想

作为一枚从事通信行业测试的老年少女测试媛&#xff0c;入职离职也有两三次了。现在又在一家企业入职了。虽然心里也清楚离职和入职&#xff0c;无非也就是从一个公司的坑里跳出来&#xff0c;再跳到另外一个公司的坑里罢了&#xff0c;明明知道老东家的坑是填不完的了&#xf…...

StreamSaver.js入门教程:优雅解决前端下载文件的难题

本文简介 点赞 关注 收藏 学会了 本文介绍一个能让前端优雅下载大文件的工具&#xff1a;StreamSaver.js ⚡️ StreamSaver.js GitHub地址⚡️ 官方案例 StreamSaver.js 可用于实现在Web浏览器中直接将大文件流式传输到用户设备的功能。 传统的下载方式可能导致大文件的加…...

element-ui vue2 iframe 嵌入外链新解

效果如图 实现原理 在路由中通过 props 传值 {path: /iframe,component: Layout,meta: { title: 小助手, icon: example },children: [{path: chatglm,name: chatglm,props: { name: chatglm,url: https://chatglm.cn },component: () > import(/views/iframe/common),me…...

win10 + VS2017 编译libjpeg(jpeg-9b)

需要用到的文件&#xff1a; jpeg-9b.zip win32.mak 下载链接链接&#xff1a;https://pan.baidu.com/s/1Z0fwbi74-ZSMjSej-0dV2A 提取码&#xff1a;huhu 步骤1&#xff1a;下载并解压jpeg-9b。 这里把jpeg-9b解压到文件夹"D:\build-libs\jpeg\build\jpeg-9b" …...

如何实现公网远程桌面访问Ubuntu?VNC+cpolar内网穿透!

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…...

SpringMvc接收参数

接受参数:1.路径设置RequestMapping(value"地址",method"请求方式") 类|方法GetMapping PostMapping 方法2.接受参数[重点]param直接接收---handler(类型 形参名) 形参名请求参数名注解指定---handler(RequestParam(name"请求参…...

计算机网络文章荟萃

脑残式网络编程入门(二)&#xff1a;我们在读写Socket时&#xff0c;究竟在读写什么&#xff1f;-网络编程/专项技术区 - 即时通讯开发者社区! 1.什么是 socket - 掘金2.socket 的实现原理 - 掘金本文讲述了 socket 在 linux 操作系统下的数据结构&#xff0c;以及阻塞 IO 利用…...

C# Socket通信从入门到精通(4)——多个异步TCP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(3)——单个异步TCP客户端C#代码实现我介绍了单个异步Tcp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步连接、异步发送、异步接收的操作,那么这时候我们使用之前单个…...

GitHub为自己的仓库(Repository)设置默认代码缩进(tabsize)

无意中发现GitHub默认显示tab为8个空格的大小&#xff0c;十分不适&#xff0c;故想改成四个字节的缩进 流程 GitHub是支持EditorConfig的。所有只需在Repository根目录下(注意不是.git文件夹下)新建文件 .editorconfig vim .editorconfig内容如下 # top-most EditorConfig…...

Tomcat的动静分离

一、动态负载均衡 3、台虚拟机模拟&#xff1a; 代理服务器&#xff1a;51 tomcat动态页面&#xff1a;53,54 关闭防火墙和安全机制 配置代理服务器&#xff0c;由于做的是七层代理&#xff0c;所以要在http模块配置 配置前端页面 <!DOCTYPE html> <html> <…...

Chimera:混合的 RLWE-FHE 方案

参考文献&#xff1a; [HS14] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in Cryptology–CRYPTO 2014, pages 554–571. Springer, 2014.[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib. In Advances in Cryptology–EUROCRYPT 2015, pages 641–6…...

MySQL 连接出现 Authentication plugin ‘caching_sha2_password的处理方法(使用第二种)

出现这个原因是mysql8 之前的版本中加密规则是mysql_native_password,而在mysql8之后,加密规则是caching_sha2_password, 解决问题方法有两种,一种是升级navicat驱动,一种是把mysql用户登录密码加密规则还原成mysql_native_password. 1. 升级MySQL版本 较早的MySQL版本可能不…...

设置Ubuntu 20.04的静态IP地址(wifi模式下)

一、引言 自己家用的Ubuntu的&#xff0c;重启后ip地址经常会改变&#xff0c;这个时候就需要我们手动配置静态IP了。 二、优点 给Ubuntu设置一个静态IP地址有以下几个好处&#xff1a; 持久性&#xff1a;静态IP地址是固定不变的&#xff0c;与设备的MAC地址绑定。这意味着…...

Qt界面实现中英文切换

要实现的效果&#xff0c;是下拉列表切换中文和English实现按钮文本中英文内容切换。 实现步骤&#xff1a; 1.在VS中鼠标对Translation Files文件右击&#xff0c;选择“添加”--->“模块”. 在弹窗的窗口中选择“Qt”--->“Qt Translation File”。 添加Translation_e…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...