当前位置: 首页 > news >正文

Node.js中的单线程服务器

为了解决多线程服务器在高并发的I/O密集型应用中的不足,同时避免早期简单单线程服务器的性能障碍,Node.js采用了基于"事件循环"的非阻塞式单线程模型,实现了如下两个目标:
(1)保证每个请求都可以快速响应;
(2)实现远超过多线程模型的并发连接数。

提示:Node.js在JS层面是单线程的——没有创建新线程的机制。但是在底层的C/C++层面是多线程的,即访问底层操作系统服务时,存在多个并发工作线程的情形——使用了线程池

阻塞执行

阻塞(Block):也称为同步执行(Synchronize),只有前面的操作全部执行完成,才能开始后续操作。(常规的多线程服务器内部都是采用的是阻塞执行)

var conn=mysql.createConnection(...);	//步骤1
var result=conn,query('INSERT...');		//步骤2
conn.end();								//步骤3

非阻塞执行

非阻塞(Non—block):也称为异步执行(Asynchronize),后面的操作不必等待之前操作的执行完毕,可以先执行。

const fs=require('fs');
console.log('读取请求数据');					//操作1
fs.writeFile('app.log','访问日志',()=>{     //操作2console.log('写出操作日志');
})
console.log('输出响应数据');					//操作3
//读取请求数据
//输出响应数据
//写出操作日志

异步回调

Node.js中的业务代码,都是在单一的主线程中执行的;当遇到耗时的阻塞操作时(如文件IO、网络访问、数据库请求等),不会等待其执行完毕,而是注册一个处理函数执行结果的回调函数,继续执行后续的代码。

待耗时的阻塞操作执行完成时,其对应的回调函数会转入回调函数队列,主线程在下次事件循环时会执行这些回调函数。

同步函数调用

const fs=require('fs');
var data=fs.readFileSync('app.log');
console.log('文件内容:',data);
console.log('程序执行完成!');
//文件内容:121212
//程序执行完成!

异步函数调用

const fs=require('fs');
fs.readFile('app.log',function(err,data){console.log('文件内容:',data)
})
console.log('程序执行完成!');
//程序执行完成!
//文件内容:121212

事件驱动

事件驱动编程是一种以事件为基础的编程范式,其中程序的执行是由事件的发生和相应的事件处理程序来驱动的。让我们详细了解事件循环和异步编程,并结合示例说明。

事件循环

事件循环是事件驱动编程的核心机制之一,它负责监听和分发事件,并调用相应的事件处理程序来响应事件。事件循环在一个持续运行的循环中不断地从事件队列中获取事件,并按照事件的顺序依次处理。常见的事件循环模型是基于单线程的,每次只处理一个事件,避免了并发访问的问题。

示例

const eventEmitter = require('events');// 创建事件发射器
const emitter = new eventEmitter();// 监听事件
emitter.on('event', (data) => {console.log('Event received:', data);
});// 触发事件
emitter.emit('event', 'Hello, world!');

在这个示例中,我们创建了一个事件发射器,并使用on方法来监听一个名为"event"的事件。当"event"事件被触发时,事件处理程序会被调用,并将事件数据传递给它。最后,我们使用emit方法触发了"event"事件,并传递了数据"Hello, world!"。这样,事件处理程序会被调用,并输出"Event received: Hello, world!"。

异步编程

异步编程是事件驱动编程中的重要概念,它允许程序在执行耗时操作时不阻塞主线程,而是通过回调函数、Promise、async/await等机制来处理操作的结果。这样可以提高程序的并发性能,避免了长时间的等待。

libuv

利用编译好的libuv库文件,我们可以开始写一个简单又经典的例子: Hello world。

#include "stdio.h"
#include "uv.h"int main() {uv_loop_t *loop = uv_default_loop();printf("hello libuv");uv_run(loop, UV_RUN_DEFAULT);
}

event-loop线程

我们都知道线程是操作系统最基本的调度单元,而进程是操作系统的最基本的资源分配单元,因此可以知道进程其实是不能运行,能运行的是进程中的线程。进程仅仅是一个容器,包含了线程运行中所需要的数据结构等信息。一个进程创建时,操作系统会创建一个线程,这就是主线程,而其他的从线程,都要在主线程的代码来创建,也就是由程序员来创建。因此每一个可执行的运用程序都至少有一个线程

于是libuv一开始便启动了event-loop线程,再在这个主线程上利用线程池去创建更多的线程。在event-loop线程中是一段while(1)的死循环代码,直到没有活跃的句柄的时候才会退出,这个时候libuv进程才被销毁掉。清楚这点对于后面的学习至关重要。

Handle

中文翻译为句柄,如[译文]libuv设计思想概述一文所属,整个libuv的实现都是基于Handle和Request。所以理解句柄以及libuv提供的所有句柄实例才能够真的掌握libuv。按照原文所述,句柄是:

表示能够在活动时执行某些操作的长生命周期对象。

理解这句话的意思,首先我们抓住两个关键词:长生命周期、对象。Libuv所有的句柄都需要初始化,而初始化都会调用类似这种函数:uv_xxx_initxxx表示句柄的类型,在该函数中,会将传入的形参handle初始化,并赋值返回具体的对象,比如初始化tcp句柄:

... // 随便截取一段初始化代码
handle->tcp.serv.accept_reqs = NULL;
handle->tcp.serv.pending_accepts = NULL;
handle->socket = INVALID_SOCKET;
handle->reqs_pending = 0;
handle->tcp.serv.func_acceptex = NULL;
handle->tcp.conn.func_connectex = NULL;
handle->tcp.serv.processed_accepts = 0;
handle->delayed_error = 0
...

理解了句柄其实就是个对象,那么长生命周期要是怎样的?还是以TCP句柄为例子,你在这个例子tcpserver.c中,可以看到后面tcp服务器的操作:绑定端口、监听端口都是基于tcp句柄,整个句柄存活于整个应用程序,只要tcp服务器没有挂掉就一直在,因此说是长生命周期的对象。

libuv提供的所有句柄如下:

接下去我们简单介绍以下所有的Libuv的句柄

uv_handle_t

首先libuv有一个基本的handle, uv_handle_t,libuv是所有其他handle的基本范式,任何handle都可以强转为该类型,并且和该Handle相关的所有API都可以为其他handle使用。

libuv能否一直运行下去的前提是检查是否有活跃的句柄存在,而检查一个句柄是否活跃(可以使用方法uv_is_active(const uv_handle_t* handle)检查),根据句柄类型不同,其含义也不一样:

  1. uv_async_t句柄总是活跃的并且不能停用,除非使用uv_close关闭掉
  2. uv_pipe_tuv_tcp_t, uv_udp_t等,这些牵扯到I/O的句柄一般也都是活跃
  3. uv_check_t, uv_idle_t, uv_timer_t等,当这些句柄开始调用uv_check_start(), uv_idle_start()的时候也是活跃的。

而检查哪些句柄活跃则可以使用这个方法:uv_print_active_handles(handle->loop, stderr);

以tcpserver.c为例子,我们启动tcp服务器后,启动一个定时器去打印存在的句柄,结果如下:

[-AI] async    0x10f78e9d8
[RA-] tcp      0x10f78e660
[RA-] timer    0x7ffee049d7c0

可以看到tcp的例子中一直存活的句柄是async、tcp、timer。它们前面中括号的标志解释如下:

R 表示该句柄被引用着
A 表示该句柄此时处于活跃状态
I 表示该句柄是内部使用的

uv_timer_t

顾名思义,Libuv的计时器,用来在将来某个时候调用对应设置的回调函数。其调用时机是在整个轮询的最最开始,后面我们会说到轮询的整个步骤。

uv_idle_t

Idle句柄在每次循环迭代中运行一次给定的回调,而且执行顺序是在prepare句柄之前。

prepare句柄的显著区别在于,当存在活动的空闲句柄时,循环将执行零超时轮询,而不是阻塞I/O。

uv_backend_timeout方法中我们可以看到返回的轮询I/O超时时间是0:

if (!QUEUE_EMPTY(&loop->idle_handles))return 0;

idle句柄的回调一般用来执行一些低优先级的任务。

**注意:尽管名称叫做“idle”,空闲句柄在每次循环迭代时都会调用它们的回调函数,
而不是在循环实际上是“空闲”的时候。**

uv_prepare_t 

prepare句柄将在每次循环迭代中运行一次给定的回调,而且是选择在I/O轮询之前。

问题是:libuv为什么要创造这么一种句柄?其实从名称来猜测,libuv应该是想提供一种方式让你可以在轮询I/O之前做些事情,然后在轮询I/O之后使用check句柄进行一些结果的校验。

uv_check_t

check句柄将在每次循环迭代中运行一次给定的回调,而且是选择在I/O轮询之后。其目的在上面已经提过

uv_async_t

Async句柄允许用户“唤醒”事件循环,并在主线程(原文翻译为another thread,其实不对)调用一开始注册的回调。这里说的唤醒其实就是发送消息给主线程(event-loop线程),让其可以执行一开始注册的回调了。

**注意:libuv会对`uv_async_send()`做一个聚合处理。
也就是说它并不会调用一次就执行一次回调。**

我们使用thread.c为例子,使用uv_queue_workuv_async_send来实践,得到的结果打印如下:

// 打印出主进程ID号和event-loop线程ID
I am the master process, processId => 90714
I am event loop thread => 0x7fff8c2d9380// 这个是uv_queue_work执行的回调,
从线程ID可以看到回调函数是在线程池中的某个线程中执行
I am work callback, calling in some thread in thread pool, pid=>90714
work_cb thread id 0x700001266000// 这个是uv_queue_work执行完回调后结束的回调,
从线程ID可以看到这个回调已经回到了主线程中执行
I am after work callback, calling from event loop thread, pid=>90714
after_work_cb thread id 0x7fff8c2d9380// 这个是uv_async_init的回调,其触发是因为在work callback中执行了uv_async_send,
可以从0x700001266000得到验证,该回调也是在主线程中执行
I am async callback, calling from event loop thread, pid=>90714
async_cb thread id 0x7fff8c2d9380
I am receiving msg: This msg from another thread: 0x700001266000

uv_poll_t

Poll句柄用于监视文件描述符的可读性、可写性和断开连接,类似于poll(2)的目的。

Poll句柄的目的是支持集成外部库,这些库依赖于事件循环来通知套接字状态的更改,比如c-areslibssh2。不建议将uv_poll_t用于任何其他目的;因为像uv_tcp_tuv_udp_t等提供了一个比uv_poll_t更快、更可伸缩的实现,尤其是在Windows上。

可能轮询处理偶尔会发出信号,表明文件描述符是可读或可写的,即使它不是。因此,当用户试图从fd读取或写入时,应该总是准备再次处理EAGAIN错误或类似的EAGAIN错误。

同一个套接字不能有多个活跃的Poll句柄,因为这可能会导致libuv出现busyloop或其他故障。

当活跃的Poll句柄轮询文件描述符时,用户不应关闭该文件描述符。否则可能导致句柄报告错误,但也可能开始轮询另一个套接字。但是,可以在调用uv_poll_stop()uv_close()之后立即安全地关闭fd。

下面罗列的是轮询的事件类型:

enum uv_poll_event {UV_READABLE = 1,UV_WRITABLE = 2,UV_DISCONNECT = 4,UV_PRIORITIZED = 8
};

uv_signal_t

Signal句柄在每个事件循环的基础上实现Unix风格的信号处理。在udpserver.c中展示了Signal句柄的使用方式:

uv_signal_t signal_handle;
r = uv_signal_init(loop, &signal_handle);
CHECK(r, "uv_signal_init");r = uv_signal_start(&signal_handle, signal_cb, SIGINT);void signal_cb(uv_signal_t *handle, int signum) {printf("signal_cb: recvd CTRL+C shutting down\n");uv_stop(uv_default_loop()); //stops the event loop
}

关于Signal句柄有几个点要知悉:

  1. 以编程方式调用raise()abort()触发的信号不会被libuv检测到;所以这些信号不会对应的回调函数。
  2. SIGKILL和SIGSTOP是不可能被捕捉到的
  3. 通过libuv处理SIGBUS、SIGFPE、SIGILL或SIGSEGV会导致未定义的行为

uv_process_t

process句柄将会新建一个新的进程并且能够允许用户控制该进程并使用流去建立通信通道。对应的demo可以查看:process.c,值得注意的是,args中提供的结构体的第一个参数path指的是可执行程序的路径,比如在demo中:

const char* exepath = exepath_for_process();
char *args[3] = { (char*) exepath, NULL, NULL };

实例中的exepath是:FsHandle的执行路径。

另外一个注意点就是父子进程的std的配置,demo中提供了一些参考,如果使用管道的话还可以参考另外一个demo:pipe

 uv_stream_t

流句柄提供了双工通信通道的抽象。uv_stream_t是一种抽象类型,libuv以uv_tcp_tuv_pipe_tuv_tty_t的形式提供了3种流实现。这个没有具体实例。但是libuv有好几个方法的入参都是uv_stream_t,说明这些方法都是可以被tcp/pipe/tty使用,具体有:

int uv_shutdown(uv_shutdown_t* req, uv_stream_t* handle, uv_shutdown_cb cb)
int uv_listen(uv_stream_t* stream, int backlog, uv_connection_cb cb)
int uv_accept(uv_stream_t* server, uv_stream_t* client)
int uv_read_start(uv_stream_t* stream, uv_alloc_cb alloc_cb, uv_read_cb read_cb)
int uv_read_stop(uv_stream_t*)
int uv_write(uv_write_t* req, uv_stream_t* handle, const uv_buf_t bufs[], unsigned int nbufs, uv_write_cb cb)
int uv_write2(uv_write_t* req, uv_stream_t* handle, const uv_buf_t bufs[], unsigned int nbu

uv_tcp_t

tcp句柄可以用来表示TCP流和服务器。上小节说到的uv_stream_tuv_tcp_t的”父类“,这里使用结构体继承的方式实现,uv_handle_tuv_stream_tuv_tcp_t三者的结构关系如下图:

使用libuv创建tcp服务器的步骤可以归纳为:

1、初始化uv_tcp_t: uv_tcp_init(loop, &tcp_server)
2、绑定地址:uv_tcp_bind
3、监听连接:uv_listen
4、每当有一个连接进来之后,调用uv_listen的回调,回调里要做如下事情:4.1、初始化客户端的tcp句柄:uv_tcp_init()4.2、接收该客户端的连接:uv_accept()4.3、开始读取客户端请求的数据:uv_read_start()4.4、读取结束之后做对应操作,如果需要响应客户端数据,调用uv_write,回写数据即可。

uv_pipe_t

 

Pipe句柄在Unix上提供了对本地域套接字的抽象,在Windows上提供了命名管道。它是uv_stream_t的“子类”。管道的用途很多,可以用来读写文件,还可以用来做线程间的通信。我们在实例中用来实现主线程与多个子线程的互相通信。实现的模型是这样的:

uv_udp_t

UDP句柄为客户端和服务器封装UDP通信。使用libuv创建udp服务器的步骤可以概括为:

1、初始化接收端的uv_udp_t: uv_udp_init(loop, &receive_socket_handle)
2、绑定地址:uv_udp_bind
3、开始接收消息:uv_udp_recv_start
4、uv_udp_recv_start里执行回调,可以使用下面方法回写数据发送给客户端4.1、uv_udp_init初始化send_socket_handle4.2、uv_udp_bind绑定发送者的地址,地址可以从recv获取4.3、uv_udp_send发送指定消息

uv_fs_event_t

FS事件句柄允许用户监视一个给定的路径的更新事件,例如,如果文件被重命名或其中有一个通用更改。这个句柄使用每个平台上最佳的解决方案。

 

uv_fs_poll_t

FS轮询句柄允许用户监视给定的更改路径。与uv_fs_event_t不同,fs poll句柄使用stat检测文件何时发生了更改,这样它们就可以在不支持fs事件句柄的文件系统上工作。

Request

那么接下去就说到Request这个短生命周期的概念,中文翻译为”请求“,类似于nodejs中的req,它也是一个结构体。还是以上述的tcp服务器为例子,有这么一段代码:

  if (r < 0) {// 如果接受连接失败,需要清理一些东西uv_shutdown_t *shutdown_req = malloc(sizeof(uv_shutdown_t));r = uv_shutdown(shutdown_req, (uv_stream_t *)tcp_client_handle, shutdown_cb);CHECK(r, "uv_shutdown");}

当客户端连接失败,需要关闭掉这个连接,于是我们就会初始化一个request,然后传递给我们需要请求的操作,这里是关闭请求shutdown

 uv_request_t是基本的request,其他任何request都是基于该结构进行扩展,它定义的所有api其他request都可以使用。和uv_handle_t一样的功效。

libuv运行的三种模式

接着说说Libuv提供的三种运行模式:

  • UV_RUN_DEFAULT 默认轮询模式,此模式会一直运行事件循环直到没有活跃句柄、引用句柄、和请求句柄
  • UV_RUN_ONCE 一次轮询模式,此模式如果pending_queue中有回调,则会执行回调而直接跨过uv__io_poll。如果没有,则此方式只会执行一次I/O轮询(uv__io_poll)。如果在执行过后有回调压入到了pending_queue中,则uv_run会返回非0,你需要在未来的某个时间再次触发一次uv_run来清空pending_queue。
  • UV_RUN_NOWAIT 一次轮询(无视pending_queue)模式,此模式类似UV_RUN_ONCE但是不会判断pending_queue是否存在回调,直接进行一次I/O轮询。

相关文章:

Node.js中的单线程服务器

为了解决多线程服务器在高并发的I/O密集型应用中的不足&#xff0c;同时避免早期简单单线程服务器的性能障碍&#xff0c;Node.js采用了基于"事件循环"的非阻塞式单线程模型&#xff0c;实现了如下两个目标&#xff1a; &#xff08;1&#xff09;保证每个请求都可以…...

如何删除数组中的某个元素?

如何删除数组中的某个元素&#xff1f; 例&#xff1a;给你一个数组 nums 和一个值 val&#xff0c;你需要移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 三种方法 1.元素前移&#xff08;时间复杂度&#xff1a;O(N^2)&#xff0c;空间复杂度&#x…...

Apache ActiveMQ RCE漏洞复现(CNVD-2023-69477)

0x01 产品简介 ActiveMQ是一个开源的消息代理和集成模式服务器&#xff0c;它支持Java消息服务(JMS) API。它是Apache Software Foundation下的一个项目&#xff0c;用于实现消息中间件&#xff0c;帮助不同的应用程序或系统之间进行通信。 0x02 漏洞概述 Apache ActiveMQ 中存…...

【BUG】Nginx转发失败解决方案

最近在做项目的时候出现了一个问题&#xff0c;琢磨了好久&#xff0c;来浅浅记录一下。 这个项目后端使用的是gateway网关和nacos实现动态的路由&#xff0c;前端使用nginx来管理前端资源&#xff0c;大体流程&#xff1a;浏览器发起请求&#xff0c;经过nginx代理&#xff0c…...

综合OA管理系统源码 OA系统源码

综合OA管理系统源码 OA系统源码 功能介绍&#xff1a; 编号&#xff1a;LQ10 一&#xff1a;系统管理 系统配置&#xff0c;功能模块&#xff0c;功能节点&#xff0c;权限角色&#xff0c;操作日志&#xff0c;备份数据&#xff0c;还原数据 二&#xff1a;基础数据 审批…...

9-MySQL提高数据管理效率(分库分表实践)

MySQL提高数据管理效率&#xff08;分库分表实践&#xff09; 在当今的互联网时代&#xff0c;随着业务规模的不断扩大&#xff0c;数据量也呈现出爆炸性的增长。如何有效地管理和存储这些数据&#xff0c;以及提高数据库的性能和可扩展性&#xff0c;成为了一个迫切需要解决的…...

经典卷积神经网络 - NIN

网络中的网络&#xff0c;NIN。 AlexNet和VGG都是先由卷积层构成的模块充分抽取空间特征&#xff0c;再由全连接层构成的模块来输出分类结果。但是其中的全连接层的参数量过于巨大&#xff0c;因此NiN提出用1*1卷积代替全连接层&#xff0c;串联多个由卷积层和“全连接”层构成…...

leetcode_2558 从数量最多的堆取走礼物

1. 题意 给定一个数组&#xff0c;每次从中取走最大的数&#xff0c;返回开根号向下取整送入堆中&#xff0c;最后计算总和。 从数量最多的堆取走礼物 2. 题解 直接用堆模拟即可 2.1 我的代码 用了额外的空间O( n ) priority_queue会自动调用make_heap() 、pop_heap() c…...

01. 嵌入式与人工智能是如何结合的?

CPU是Arm A57的 GPU是128cuda核 一.小车跟踪的需求和设计方法 比如有一个小车跟踪的项目。 需求是&#xff1a;小车识别出罪犯&#xff0c;然后去跟踪他。方法&#xff1a;摄像头采集到人之后传入到开发板&#xff0c;内部做一下识别&#xff0c;然后控制小车去跟随。在人工智…...

vue3.0运行npm run dev 报错Cannot find module node:url

vue3.0运行npm run dev 报错Cannot find module 问题背景 近期用vue3.0写项目&#xff0c;npm init vuelatest —> npm install 都正常,npm run dev的时候报错如下&#xff1a; failed to load config from F:\code\testVue\vue-demo\vite.config.js error when starting…...

26. 删除排序数组中的重复项、Leetcode的Python实现

博客主页&#xff1a;&#x1f3c6;看看是李XX还是李歘歘 &#x1f3c6; &#x1f33a;每天分享一些包括但不限于计算机基础、算法等相关的知识点&#x1f33a; &#x1f497;点关注不迷路&#xff0c;总有一些&#x1f4d6;知识点&#x1f4d6;是你想要的&#x1f497; ⛽️今…...

荣耀推送服务消息分类标准

前言 为了提升终端用户的推送体验、营造良好可持续的通知生态&#xff0c;荣耀推送服务将对推送消息进行分类管理。 消息分类 定义 荣耀推送服务将根据应用类型、消息内容和消息发送场景&#xff0c;将推送消息分成服务通讯和资讯营销两大类别。 服务通讯类&#xff0c;包…...

[数据结构]-二叉搜索树

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正。 目录 一、二叉搜…...

力扣每日一题79:单词搜索

题目描述&#xff1a; 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 单词必须按照字母顺序&#xff0c;通过相邻的单元格内的字母构成&#xff0c;其中“相邻”单元格…...

ChatGPT如何应对用户提出的道德伦理困境?

ChatGPT在应对用户提出的道德伦理困境时&#xff0c;需要考虑众多复杂的因素。道德伦理问题涉及到价值观、原则、社会和文化背景&#xff0c;以及众多伦理理论。ChatGPT的设计和应用需要权衡各种考虑因素&#xff0c;以确保它不仅提供有用的信息&#xff0c;而且遵循伦理标准。…...

SpringBoot运行流程源码分析------阶段三(Spring Boot外化配置源码解析)

Spring Boot外化配置源码解析 外化配置简介 Spring Boot设计了非常特殊的加载指定属性文件&#xff08;PropertySouce&#xff09;的顺序&#xff0c;允许属性值合理的覆盖&#xff0c;属性值会以下面的优先级进行配置。home目录下的Devtool全局设置属性&#xff08;~/.sprin…...

环形链表-力扣

一、题目描述 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 二、题解 解题思路&#xff1a; 快慢指针&#xff0c;即慢指针一次走一步&#xff0c;快指针一次走两步&#xff0c;两个指针从链表起始位置开始运行&#xff0c;…...

人生岁月年华

人生很长吗&#xff1f;不知道。只知道高中坐在教室里&#xff0c;闹哄哄的很难受。也记得上班时无聊敲着代码也很难受。 可是人生也不长。你没有太多时间去试错&#xff0c;你没有无限的时间精力去追寻你认为的高大上。 人生是何体验呢&#xff1f;人生的感觉很多吧。大多数…...

电脑QQ如何录制视频文件?

听说QQ可以录制视频&#xff0c;还很方便&#xff0c;请问该如何录制呢&#xff1f;是需要先打开QQ才可以录制吗&#xff1f;还是可以直接使用快捷键进行录制呢&#xff1f;录制的质量又如何呢&#xff1f; 不要着急&#xff0c;既然都打开这篇文章看了&#xff0c;那小编今天…...

python:多波段遥感影像分离成单波段影像

作者:CSDN @ _养乐多_ 在遥感图像处理中,我们经常需要将多波段遥感影像拆分成多个单波段图像,以便进行各种分析和后续处理。本篇博客将介绍一个用Python编写的程序,该程序可以读取多波段遥感影像,将其拆分为单波段图像,并保存为单独的文件。本程序使用GDAL库来处理遥感影…...

天堂2游戏出错如何解决

运行游戏时出现以下提示&#xff1a;“the game may not be consistant because AGP is deactivated please activate AGP for consistancy” 这个问题的原因可能是由于您的显示卡的驱动或者主板的显示芯片组的驱动不是新开。或您虽然已经更新了您的显示卡的驱动程序&#xff0…...

『力扣刷题本』:合并两个有序链表(递归解法)

一、题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4]示例 2&#xff1a; 输入&#xff1a;l1 [], l2 [] 输出&#x…...

C++设计模式_12_Singleton 单件模式

在之前的博文C57个入门知识点_44&#xff1a;单例的实现与理解中&#xff0c;已经详细介绍了单例模式&#xff0c;并且根据其中内容&#xff0c;单例模式已经可以在日常编码中被使用&#xff0c;本文将会再做梳理。 Singleton 单件模式可以说是最简单的设计模式&#xff0c;但由…...

67 内网安全-域横向smbwmi明文或hash传递

#知识点1: windows2012以上版本默认关闭wdigest&#xff0c;攻击者无法从内存中获取明文密码windows2012以下版本如安装KB2871997补丁&#xff0c;同样也会导致无法获取明文密码针对以上情况&#xff0c;我们提供了4种方式解决此类问题 1.利用哈希hash传递(pth&#xff0c;ptk等…...

面向对象(类/继承/封装/多态)详解

简介: 面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种广泛应用于软件开发的编程范式。它基于一系列核心概念&#xff0c;包括类、继承、封装和多态。在这篇详细的解释中&#xff0c;我们将探讨这些概念&#xff0c;并说明它们如何在P…...

【Python机器学习】零基础掌握GradientBoostingRegressor集成学习

如何精准预测房价? 当人们提到房价预测时,很多人可能会想到房地产经纪人或专业的评估师。但是,有没有一种更科学、更精确的方法来预测房价呢?答案是有的,这就要用到机器学习中的一种算法——梯度提升回归(Gradient Boosting Regressor)。 假设现在有一组房屋数据,包括…...

【tio-websocket】12、应用层包—Packet

Packet 介绍 Packet 是用于表述业务数据结构的,我们通过继承 Packet 来实现自己的业务数据结构,对于各位而言,把 Packet 看作是一个普通的 VO 对象即可。 public class Packet implements java.io.Serializable, Cloneable {private static Logger log = LoggerFac…...

OpenCV官方教程中文版 —— 模板匹配

OpenCV官方教程中文版 —— 模板匹配 前言一、原理二、OpenCV 中的模板匹配三、多对象的模板匹配 前言 在本节我们要学习&#xff1a; 使用模板匹配在一幅图像中查找目标 函数&#xff1a;cv2.matchTemplate()&#xff0c;cv2.minMaxLoc() 一、原理 模板匹配是用来在一副大…...

如何为3D模型设置自发光材质?

1、自发光贴图的原理 自发光贴图是一种纹理贴图&#xff0c;用于模拟物体自发光的效果。其原理基于光的发射和反射过程。 在真实世界中&#xff0c;物体自发光通常是由于其本身具有能够产生光的属性&#xff0c;如荧光物质、发光材料或光源本身。为了在计算机图形中模拟这种效…...

UI组件库基础

UI组件库 全局组件* 全局注册组件 & 并且使用了require.context 模块化编程 & webpack打包 const install(Vue)>{const contextrequire.context(.,true,/\.vue$/)context.keys().forEach(fileName>{const modulecontext(fileName)Vue.component(module.default.n…...