当前位置: 首页 > news >正文

[数据结构]-二叉搜索树

前言

作者小蜗牛向前冲

名言我可以接受失败,但我不能接受放弃

 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正。

目录

一、二叉搜索树的基本知识

1、什么是二叉搜索树

2、二叉搜索树的性能分析 

二、底层模拟实现

1、构建二叉搜索树

2、二叉搜索树的查找

3、二叉搜索树的插入

4、二叉搜索树的删除节点

 5、完整代码实现

三、二叉搜索树的应用

1、K模型

2、KV模型


 本期学习目标:清楚什么是二叉搜索树,模拟实现二叉搜索树,理解二叉搜索树的K模型和KV模型。

一、二叉搜索树的基本知识

1、什么是二叉搜索树

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

二叉搜索树的这种特性使得在其中进行搜索、插入和删除操作具有高效性能。通过对节点值的比较,我们可以迅速定位目标节点或确定应插入的位置。

上图中就是二叉搜索树的构成,他满足所有左叶子节点比跟小,所以的右叶子节点比根要大。

为了更好的理解二叉搜索树,下面将带来大家底层实现二叉搜索树的查找,插入,删除。

2、二叉搜索树的性能分析 

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二 叉搜索树的深度的函数,即结点越深,则比较次数越多

但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

  •  最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:O(log n)
  • 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为O(n)

二、底层模拟实现

1、构建二叉搜索树

template<class K>struct BSTreeNode{BSTreeNode<K>* _left;BSTreeNode<K>* _right;K _key;BSTreeNode(const K& key):_key(key), _left(nullptr), _right(nullptr){}};template<class K>class BSTree{typedef BSTreeNode<K> Node;public://函数private:Node* _root = nullptr;}

这里我们定义好节点,和树的主体就好了,下面我的二叉搜索树的功能函数多在类中实现。

2、二叉搜索树的查找

现在给我们一颗搜索二叉树,那我们是如何让他查找到我们想要的元素

查找原则:

  • 从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
  • 最多查找高度次,走到到空,还没找到,这个值不存在。

顺着这个思路我们很容易思路就可以写出查找: 

普通写法:

//查找
bool Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{return true;}}return false;
}

递归写法:

bool _FindR(Node* root, const K& key)
{if (root == nullptr){return false;}if (root->_key < key){return _FindR(root->_right, key);}else if (root->_key > key){return _FindR(root->_left, key);}else{return true;}
}

这二种写法,在这里好像看不出来特别大的差别。

3、二叉搜索树的插入

这里我们思考一下,如果我们要在1处插入 0

我们要找到插入的位置。然后在new一个节点进连接就可以

插入的具体过程如下:

a. 树为空,则直接新增节点,赋值给root指针

b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

普通写法: 

	bool Inert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;//遍历树,找插入位置while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}//创建节点cur = new Node(key);//连接树if (parent->_key > key){parent->_left = cur;}else{parent->_right = cur;}return true;}

递归写法:

		bool _InsertR(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (root->_key < key){return _InsertR(root->_right, key);}else if (root->_key > key){return _InsertR(root->_left, key);}else{return false;}}

递归写法最让我们感到绝妙的是我们在这里传root用的是引用,因为用递归时(如果没有用root的引用)并没有传父亲节点,这也就在连接的时候会遇到到问题,但是我们这里传了root的引用就可以解决这个问题

这里当我们要插入9,到我们递归到root == 10时候,在进行递归时,会往root->left递归,指向空,就可以插入,而&root是root->left指针的别名,就可以完美的连接起来。

4、二叉搜索树的删除节点

这里是本次模拟的难点所在,大家可以细细品味:

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情 况:

  • a. 要删除的结点无孩子结点
  • b. 要删除的结点只有左孩子结点
  • c. 要删除的结点只有右孩子结点
  • d. 要删除的结点有左、右孩子结点

其实我们可以总结为3种删除情况:

  • 情况1:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点--直接删除
  • 情况2:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点--直接删除
  • 情况3:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点 中,再来处理该结点的删除问题--替换法删除

普通写法:

这里我们重点注意第三种情况,这里我们是找左树的最大或者说是右树的最小和我们要删除的数,进行替换在删除就可以了。

//删除
bool Erase(const K& key)
{Node* parent = nullptr;Node* cur = _root;while (cur){//先找到要删除的数if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{//1、左为空//2、右为空// 1.2都可以直接删除//在直接删除前,我们还要做好cur的左右节点的链接工作,并处理特殊情况(cur==_root)if (cur->_left == nullptr){//处理特殊情况if (cur == _root){_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr){//处理特殊情况if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}

递归写法:

bool _EraseR(Node*& root, const K& key)
{if (root == nullptr){return false;}//先找到要删除的位置if (root->_key < key){return _EraseR(root->_right, key);}else if (root->_key > key){return _EraseR(root->_left, key);}else{Node* del = root;if (root->_right == nullptr){root = root->_left;}else if (root->_left == nullptr){root = root->_right;}else{Node* minRight = root->_right;while (minRight->_left){minRight = minRight->_left;}swap(root->_key, minRight->_key);//转换为在子树中删除节点return _EraseR(root->_right, key);}delete del;return true;}
}

 5、完整代码实现

namespace K
{template<class K>struct BSTreeNode{BSTreeNode<K>* _left;BSTreeNode<K>* _right;K _key;BSTreeNode(const K& key):_key(key), _left(nullptr), _right(nullptr){}};template<class K>class BSTree{typedef BSTreeNode<K> Node;public://默认构造BSTree():_root(nullptr){}//构造函数BSTree(const BSTree<K>& t){_root = Copy(t._root);}//赋值重载BSTree<K>& operator=(BSTree<K> t){swap(_root, t._root);return *this;}//析构函数~BSTree(){Destroy(_root);_root = nullptr;}//搜索二插树插入bool Inert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;//遍历树,找插入位置while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}//创建节点cur = new Node(key);//连接树if (parent->_key > key){parent->_left = cur;}else{parent->_right = cur;}return true;}//查找bool Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{return true;}}return false;}//删除bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){//先找到要删除的数if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{//1、左为空//2、右为空// 1.2都可以直接删除//在直接删除前,我们还要做好cur的左右节点的链接工作,并处理特殊情况(cur==_root)if (cur->_left == nullptr){//处理特殊情况if (cur == _root){_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr){//处理特殊情况if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}//3、左右都不为空//找cur右子数的最小节点else{Node* parent = cur;Node* minRight = cur->_right;while (minRight->_left){parent = minRight;minRight = minRight->_left;}cur->_key = minRight->_key;//连接if (parent->_left == minRight){parent->_left = minRight->_right;}else{parent->_right = minRight->_right;}//删除节点delete minRight;}return true;}}return false;}void InOrder(){_InOrder(_root);cout << endl;}bool InsertR(const K& key){return _InsertR(_root, key);}bool FindR(const K& key){return _FindR(_root, key);}bool EraseR(const K& key){return _EraseR(_root, key);}//递归写法完成增删查改private:void Destroy(Node* root){if (root == nullptr){return;}Destroy(root->_left);Destroy(root->_right);delete root;}//拷贝节点Node* Copy(Node* root){if (root == nullptr){return nullptr;}Node* newRoot = new Node(root->_key);newRoot->_left = Copy(root->_left);newRoot->_right = Copy(root->_right);return newRoot;}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}bool _InsertR(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (root->_key < key){return _InsertR(root->_right, key);}else if (root->_key > key){return _InsertR(root->_left, key);}else{return false;}}bool _FindR(Node* root, const K& key){if (root == nullptr){return false;}if (root->_key < key){return _FindR(root->_right, key);}else if (root->_key > key){return _FindR(root->_left, key);}else{return true;}}bool _EraseR(Node*& root, const K& key){if (root == nullptr){return false;}//先找到要删除的位置if (root->_key < key){return _EraseR(root->_right, key);}else if (root->_key > key){return _EraseR(root->_left, key);}else{Node* del = root;if (root->_right == nullptr){root = root->_left;}else if (root->_left == nullptr){root = root->_right;}else{Node* minRight = root->_right;while (minRight->_left){minRight = minRight->_left;}swap(root->_key, minRight->_key);//转换为在子树中删除节点return _EraseR(root->_right, key);}delete del;return true;}}private:Node* _root = nullptr;};
}

三、二叉搜索树的应用

1、K模型

K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到 的值。 比如:给一个单词word,判断该单词是否拼写正确,具体方式如下: 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

这里就是我们完整实现的二叉树,这里我们用二叉搜索树的查找功能,如果该单词存在树中就会返回true,否则返回false。

2、KV模型

KV模型:每一个关键码key,都有与之对应的值Value,即的键值对。该种方 式在现实生活中非常常见:

  • 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英 文单词与其对应的中文就构成一种键值对;
  • 再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出 现次数就是就构成一种键值对。

这里我们上面代码进行简单改造就可以得到我们的KV模型:

namespace KV
{template<class K, class V>struct BSTreeNode{BSTreeNode<K, V>* _left;BSTreeNode<K, V>* _right;K _key;V _value;BSTreeNode(const K& key, const V& value):_key(key), _value(value), _left(nullptr), _right(nullptr){}};//BSTree<string, vector<string>> bookInfo;template<class K, class V>class BSTree{typedef BSTreeNode<K, V> Node;public:bool Insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key, value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key, value);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return nullptr;}void Inorder(){_Inorder(_root);}void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_key << ":" << root->_value << endl;_Inorder(root->_right);}private:Node* _root = nullptr;};
}void TestBSTree2()
{
// Key/Value的搜索模型,通过Key查找或修改ValuKV::BSTree<string, string> dict;dict.Insert("sort", "排序");dict.Insert("string", "字符串");dict.Insert("left", "左边");dict.Insert("right", "右边");string str;while (cin >> str){KV::BSTreeNode<string, string>* ret = dict.Find(str);if (ret){cout << ret->_value << endl;}else{cout << "无此单词" << endl;}}
}

这里我们对改造的二叉搜索树,就可以进行通过英文快速找到英文。

相关文章:

[数据结构]-二叉搜索树

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正。 目录 一、二叉搜…...

力扣每日一题79:单词搜索

题目描述&#xff1a; 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 单词必须按照字母顺序&#xff0c;通过相邻的单元格内的字母构成&#xff0c;其中“相邻”单元格…...

ChatGPT如何应对用户提出的道德伦理困境?

ChatGPT在应对用户提出的道德伦理困境时&#xff0c;需要考虑众多复杂的因素。道德伦理问题涉及到价值观、原则、社会和文化背景&#xff0c;以及众多伦理理论。ChatGPT的设计和应用需要权衡各种考虑因素&#xff0c;以确保它不仅提供有用的信息&#xff0c;而且遵循伦理标准。…...

SpringBoot运行流程源码分析------阶段三(Spring Boot外化配置源码解析)

Spring Boot外化配置源码解析 外化配置简介 Spring Boot设计了非常特殊的加载指定属性文件&#xff08;PropertySouce&#xff09;的顺序&#xff0c;允许属性值合理的覆盖&#xff0c;属性值会以下面的优先级进行配置。home目录下的Devtool全局设置属性&#xff08;~/.sprin…...

环形链表-力扣

一、题目描述 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 二、题解 解题思路&#xff1a; 快慢指针&#xff0c;即慢指针一次走一步&#xff0c;快指针一次走两步&#xff0c;两个指针从链表起始位置开始运行&#xff0c;…...

人生岁月年华

人生很长吗&#xff1f;不知道。只知道高中坐在教室里&#xff0c;闹哄哄的很难受。也记得上班时无聊敲着代码也很难受。 可是人生也不长。你没有太多时间去试错&#xff0c;你没有无限的时间精力去追寻你认为的高大上。 人生是何体验呢&#xff1f;人生的感觉很多吧。大多数…...

电脑QQ如何录制视频文件?

听说QQ可以录制视频&#xff0c;还很方便&#xff0c;请问该如何录制呢&#xff1f;是需要先打开QQ才可以录制吗&#xff1f;还是可以直接使用快捷键进行录制呢&#xff1f;录制的质量又如何呢&#xff1f; 不要着急&#xff0c;既然都打开这篇文章看了&#xff0c;那小编今天…...

python:多波段遥感影像分离成单波段影像

作者:CSDN @ _养乐多_ 在遥感图像处理中,我们经常需要将多波段遥感影像拆分成多个单波段图像,以便进行各种分析和后续处理。本篇博客将介绍一个用Python编写的程序,该程序可以读取多波段遥感影像,将其拆分为单波段图像,并保存为单独的文件。本程序使用GDAL库来处理遥感影…...

天堂2游戏出错如何解决

运行游戏时出现以下提示&#xff1a;“the game may not be consistant because AGP is deactivated please activate AGP for consistancy” 这个问题的原因可能是由于您的显示卡的驱动或者主板的显示芯片组的驱动不是新开。或您虽然已经更新了您的显示卡的驱动程序&#xff0…...

『力扣刷题本』:合并两个有序链表(递归解法)

一、题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4]示例 2&#xff1a; 输入&#xff1a;l1 [], l2 [] 输出&#x…...

C++设计模式_12_Singleton 单件模式

在之前的博文C57个入门知识点_44&#xff1a;单例的实现与理解中&#xff0c;已经详细介绍了单例模式&#xff0c;并且根据其中内容&#xff0c;单例模式已经可以在日常编码中被使用&#xff0c;本文将会再做梳理。 Singleton 单件模式可以说是最简单的设计模式&#xff0c;但由…...

67 内网安全-域横向smbwmi明文或hash传递

#知识点1: windows2012以上版本默认关闭wdigest&#xff0c;攻击者无法从内存中获取明文密码windows2012以下版本如安装KB2871997补丁&#xff0c;同样也会导致无法获取明文密码针对以上情况&#xff0c;我们提供了4种方式解决此类问题 1.利用哈希hash传递(pth&#xff0c;ptk等…...

面向对象(类/继承/封装/多态)详解

简介: 面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种广泛应用于软件开发的编程范式。它基于一系列核心概念&#xff0c;包括类、继承、封装和多态。在这篇详细的解释中&#xff0c;我们将探讨这些概念&#xff0c;并说明它们如何在P…...

【Python机器学习】零基础掌握GradientBoostingRegressor集成学习

如何精准预测房价? 当人们提到房价预测时,很多人可能会想到房地产经纪人或专业的评估师。但是,有没有一种更科学、更精确的方法来预测房价呢?答案是有的,这就要用到机器学习中的一种算法——梯度提升回归(Gradient Boosting Regressor)。 假设现在有一组房屋数据,包括…...

【tio-websocket】12、应用层包—Packet

Packet 介绍 Packet 是用于表述业务数据结构的,我们通过继承 Packet 来实现自己的业务数据结构,对于各位而言,把 Packet 看作是一个普通的 VO 对象即可。 public class Packet implements java.io.Serializable, Cloneable {private static Logger log = LoggerFac…...

OpenCV官方教程中文版 —— 模板匹配

OpenCV官方教程中文版 —— 模板匹配 前言一、原理二、OpenCV 中的模板匹配三、多对象的模板匹配 前言 在本节我们要学习&#xff1a; 使用模板匹配在一幅图像中查找目标 函数&#xff1a;cv2.matchTemplate()&#xff0c;cv2.minMaxLoc() 一、原理 模板匹配是用来在一副大…...

如何为3D模型设置自发光材质?

1、自发光贴图的原理 自发光贴图是一种纹理贴图&#xff0c;用于模拟物体自发光的效果。其原理基于光的发射和反射过程。 在真实世界中&#xff0c;物体自发光通常是由于其本身具有能够产生光的属性&#xff0c;如荧光物质、发光材料或光源本身。为了在计算机图形中模拟这种效…...

UI组件库基础

UI组件库 全局组件* 全局注册组件 & 并且使用了require.context 模块化编程 & webpack打包 const install(Vue)>{const contextrequire.context(.,true,/\.vue$/)context.keys().forEach(fileName>{const modulecontext(fileName)Vue.component(module.default.n…...

数据结构与算法之矩阵: Leetcode 48. 旋转矩阵 (Typescript版)

旋转图像 https://leetcode.cn/problems/rotate-image/ 描述 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1 输入&…...

大厂面试题-JVM中的三色标记法是什么?

目录 问题分析 问题答案 问题分析 三色标记法是Java虚拟机(JVM)中垃圾回收算法的一种&#xff0c;主要用来标记内存中存活和需要回收的对象。 它的好处是&#xff0c;可以让JVM不发生或仅短时间发生STW(Stop The World)&#xff0c;从而达到清除JVM内存垃圾的目的&#xff…...

Leetcode—121.买卖股票的最佳时机【简单】

2023每日刷题&#xff08;十一&#xff09; Leetcode—17.电话号码的字母组合 枚举法题解 参考自灵茶山艾府 枚举法实现代码 int maxProfit(int* prices, int pricesSize){int i;int max 0;int minPrice prices[0];for(i 1; i < pricesSize; i) {int tmp prices[i] -…...

【云原生】portainer管理多个独立docker服务器

目录 一、portainer简介 二、安装Portainer 1.1 内网环境下&#xff1a; 1.1.1 方式1&#xff1a;命令行运行 1.1.2 方式2&#xff1a;通过compose-file来启动 2.1 配置本地主机&#xff08;node-1&#xff09; 3.1 配置其他主机&#xff08;被node-1管理的节点服务器&…...

Command集合

Command集合 mysql相关命令 查看mysql的状态 sudo netstat -tap | grep mysql 启动mysql sudo service mysql start 停止mysql sudo service mysql stop 重启mysql sudo service mysql restart 指定端口号&#xff0c;客户端连接mysql sudo mysql -h127.0.0.1 -uroot -p red…...

【QT开发(17)】2023-QT 5.14.2实现Android开发

1、简介 搭建Qt For Android开发环境需要安装的软件有&#xff1a; JAVA SDK &#xff08;jdk 有apt install 安装&#xff09; Android SDK Android NDKQT官网的介绍&#xff1a; Different Qt versions depend on different NDK versions, as listed below: Qt versionNDK…...

JVM相关面试题(每日一练)

1. 什么是垃圾回收机制&#xff1f; 垃圾收集 Garbage Collection 通常被称为“GC”&#xff0c;它诞生于1960年 MIT 的 Lisp 语言&#xff0c;经过半个多世纪&#xff0c;目前已经十分成熟了。 jvm 中&#xff0c;程序计数器、虚拟机栈、本地方法栈都是随线程而生随线程而灭&a…...

OpenCV 相机相关函数

一、变换参数矩阵的求解 1. 计算三个二维点对之间的仿射变换矩阵&#xff1a;getAffineTransform() 2. 计算多个二维点对之间的最优放射变换矩阵&#xff08;误差最小准则&#xff09;&#xff1a;estimateRigidTransform();或者findHomography(); 3. 计算四个二维点对之间的…...

微信小程序之投票管理

前言 对于会议管理模块&#xff0c;必不可少的当然就是我们的投票管理&#xff0c;实现真正意义上的无纸化办公&#xff0c;本期博客为大家介绍会议管理模块&#xff0c;包括发布投票及查看各类投票的状态 所用技术点 MyBatis、SpringMVC、VentUI MyBatis和SpringMVC在博客主…...

23种设计模式【创建型模式】详细介绍之【建造者模式】

建造者模式&#xff1a;构建复杂对象的精妙设计 设计模式的分类和应用场景总结建造者模式&#xff1a;构建复杂对象的精妙设计建造者模式的核心思想建造者模式的参与者Java示例&#xff1a;建造者模式 设计模式的分类和应用场景总结 可以查看专栏设计模式&#xff1a;设计模式 …...

[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

MA 均线时最基本的技术指标&#xff0c;也是最简单&#xff0c;最不常用的&#xff08;通常使用EMA、SMA&#xff09;。 以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。 MA 均线指标公式 MA (N)(C1 C2 C3 …C N )/N目录 方式一1.SQL 直接查询均值2.使用 pyp…...

c语言 判断两个文件是否相同

使用strcmp比较&#xff1a; #include <stdio.h> #include <string.h>int Compare(const char * file1, const char* file2) {FILE* f1, * f2;int size1, size2;unsigned char buffer1[1024], buffer2[1024];f1 fopen(file1, "rb");f2 fopen(file2, &…...