【MATLAB源码-第59期】基于matlab的QPSK,16QAM164QAM等调制方式误码率对比,调制解调函数均是手动实现未调用内置函数。
操作环境:
MATLAB 2022a
1、算法描述
正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。
同其它调制方式类似,QAM通过载波某些参数的变化传输信息。在QAM中,数据信号由相互正交的两个载波的幅度变化表示。
模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。由此,模拟信号频率调制和数字信号FSK也可以被认为是相位调制(PSK)的特例,因为它们本质上就是相位调制。这里主要讨论数字信号的QAM,虽然模拟信号QAM也有很多应用,例如NTSC和PAL制式的电视系统就利用正交的载波传输不同的颜色分量。
类似于其他数字调制方式,QAM发射信号集可以用星座图方便地表示。星座图上每一个星座点对应发射信号集中的一个信号。设正交幅度调制的发射信号集大小为 N
,称之为N-QAM。星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。数字通信中数据常采用二进制表示,这种情况下星座点的个数一般是2的幂。常见的QAM形式有16-QAM、64-QAM、256-QAM,以及未来5G采用之512-QAM及1024-QAM。星座点数越多,每个符号能传输的信息量就越大。但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。因此高阶星座图的可靠性比低阶要差。
当对数据传输速率的要求高过8-PSK能提供的上限时,一般采用QAM的调制方式。因为QAM的星座点比PSK的星座点更分散,星座点之间的距离因之更大,所以能提供更好的传输性能。但是QAM星座点的幅度不是完全相同的,所以它的解调器需要能同时正确检测相位和幅度,不像PSK解调只需要检测相位,这增加了QAM解调器的复杂性。
2、仿真结果演示
3、关键代码展示
%此段代码实现信号的64QAM调制function [tx_64QAM]= Mapping_64QAM (tx_bits)global ac;%同相分量
global as;%正交分量
global num;[m,n]=size(tx_bits);
num=m*n;%同相分量:横坐标
map1=[-7,-7,-7,-7,-7,-7,-7,-7,-5,-5,-5,-5,-5,-5,-5,-5 -1,-1,-1,-1,-1,-1,-1,-1, -3 -3 -3 -3 -3 -3 -3 -3 7 7 7 7 7 7 7 7 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3];%正交分量:纵坐标map2=[-7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3 -7 -5 -1 -3 7 5 1 3];Dec_ac=zeros(num/6,1);
Dec_as=zeros(num/6,1);ac=zeros(num/6,1);
as=zeros(num/6,1);tx_64QAM=zeros(num/6,1);for N=1:num/6Dec_ac(N,:)=bi2de(tx_bits(N,:),'left-msb'); Dec_as(N,:)=bi2de(tx_bits(N,:),'left-msb'); %同相分量acac(N)=map1(Dec_ac(N)+1);%MATLAB索引从1开始%正交分量asas(N)=map2(Dec_as(N)+1);%MATLAB索引从1开始 tx_64QAM(N,1)=ac(N)+1j*as(N);
end
debug=1;
4、MATLAB 源码获取
V
点击下方名片
相关文章:
【MATLAB源码-第59期】基于matlab的QPSK,16QAM164QAM等调制方式误码率对比,调制解调函数均是手动实现未调用内置函数。
操作环境: MATLAB 2022a 1、算法描述 正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此…...
经典目标检测神经网络 - RCNN、SSD、YOLO
文章目录 1. 目标检测算法分类2. 区域卷积神经网络2.1 R-CNN2.2 Fast R-CNN2.3 Faster R-CNN2.4 Mask R-CNN2.5 速度和精度比较 3. 单发多框检测(SSD)4. YOLO 1. 目标检测算法分类 目标检测算法主要分两类:One-Stage与Two-Stage。One-Stage与…...
mysql存在10亿条数据,如何高效随机返回N条纪录,sql如何写
1 低效方案 1.使用ORDER BY RAND(): SELECT * FROM your_table ORDER BY RAND() LIMIT 1; 这将随机排序表中的所有行,并且通过LIMIT 1仅返回第一行,从而返回一个随机记录。然而,对于大型表来说,ORDER BY RAND()可能会…...
c语言中啥时候用double啥时候用float?
c语言中啥时候用double啥时候用float? 一般来说,可以使用double来表示具有更高精度要求的浮点数,因为它可以存储更大范围的数值并且具有更高的精度。 最近很多小伙伴找我,说想要一些c语言资料,然后我根据自己从业十年…...
vscode 保存 “index.tsx“失败: 权限不足。选择 “以超级用户身份重试“ 以超级用户身份重试。
vscode 保存 "index.tsx"失败: 权限不足。选择 “以超级用户身份重试” 以超级用户身份重试。 操作:mac在文件夹中创建文件,sudo 创建umiJs项目 解决:修改文件夹权限 右键文件夹...
综合性练习
名片管理系统 综合性项目实现—详细请点这里 dict {} # 定义一个空字典,用于存储信息。 list [] # 定义一个列表,存储name值 list1 [] #存储age值 list2 [] #存储phone值 def people_tips(): #提示print("*****" * 10)print("…...
threejs(7)-精通粒子特效
一、初识Points与点材质 // 设置点材质 const pointsMaterial new THREE.PointsMaterial(); import * as THREE from "three"; // 导入轨道控制器 import { OrbitControls } from "three/examples/jsm/controls/OrbitControls"; // 导入动画库 import gsa…...
使用了百度OCR,记录一下
由于识别ocr有的频率不高,图片无保密性需求,也不想太大的库, 就决定还是用下api算了,试用了几家,决定用百度的ocr包,相对简单。 遇到的问题里面下列基本有提到:例如获取ID,KEY&…...
5.OsgEarth加载地形
愿你出走半生,归来仍是少年! 在三维场景中除了使用影像体现出地貌情况,还需要通过地形体现出地势起伏,还原一个相对真实的三维虚拟世界。 osgEarth可通过直接加载Dem数据进行场景内的地形构建。 1.数据准备 由于我也没有高程数据,…...
基于回溯搜索算法的无人机航迹规划-附代码
基于回溯搜索算法的无人机航迹规划 文章目录 基于回溯搜索算法的无人机航迹规划1.回溯搜索搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用回溯搜索算法来优化无人机航迹规划。 …...
微信小程序云开发笔记-初始化商城小程序
缘起:由于痴迷机器人,店都快倒闭了,没办法,拿出点精力给店里搞个小程序,要多卖货才能活下来搞机器人,在此记录一下搞小程序的过程,要不然搞完又忘了。腾讯的云开发,前端和后端都有了…...
vulnhub_DeRPnStiNK靶机渗透测试
VulnHub2018_DeRPnStiNK靶机 https://www.vulnhub.com/entry/derpnstink-1,221/ flag1(52E37291AEDF6A46D7D0BB8A6312F4F9F1AA4975C248C3F0E008CBA09D6E9166) flag2(a7d355b26bda6bf1196ccffead0b2cf2b81f0a9de5b4876b44407f1dc07e51e6) flag4(49dca65f362fee401292ed7ada96f9…...
网站如何判断请求是来自手机-移动端还是PC-电脑端?如何让网站能适应不同的客户端?
如果网站需要实现手机和PC双界面适应,可以有两种方式: 第一种是响应式界面,根据屏幕宽度来判定显示的格式。这种需要前端来做,手机/PC共用一套代码,有一定的局限性。 第二种是后端通过request请求头中的内容来分析客户…...
sass和 scss的区别?
Sass(Syntactically Awesome Style Sheets)和 SCSS(Sassy CSS)是两种流行的 CSS 预处理器,它们扩展了普通的 CSS 语法,提供了更多的功能和便利性。下面是 Sass 和 SCSS 的主要区别: 1ÿ…...
Vuex 动态模块状态管理器
模块化思想 我们之前的博文已经讲述了Vuex怎么使用命名空间实现模块化状态管理。详情可以看: Vuex命名空间及如何获取根模块、兄弟模块状态管理器_AI3D_WebEngineer的博客-CSDN博客https://blog.csdn.net/weixin_42274805/article/details/133269196?ops_request_…...
实现分片上传、断点续传、秒传 (JS+NodeJS)(TypeScript)
一、引入及效果 上传文件是一个很常见的操作,但是当文件很大时,上传花费的时间会非常长,上传的操作就会具有不确定性,如果不小心连接断开,那么文件就需要重新上传,导致浪费时间和网络资源。 所以࿰…...
浅谈安科瑞EMS能源管控平台建设的意义-安科瑞 蒋静
摘 要:能源消耗量大、能源运输供给不足、环境压力日趋增加、能耗双控等一系列问题一直困扰着钢铁冶金行业,制约着企业快速稳定健康发展。本文介绍的安科瑞EMS能源管控平台,采用自动化、信息化技术,实现从能源数据采集、过程监控、…...
【原创】指针变量作为函数参数要点注意+main函数中值是否改变
指针变量作为函数参数要点注意(已写至笔记) 1传参指针不加*(main中函数) 2收参指针要加*(被main调用的函数) 3传参指针名可与收参指针名不同,不影响 4【问】如何看主函数中指针所指内容是否改变…...
售后处置跟踪系统设想
售后处置跟踪系统设想 前言 随着汽车工业的发展,软件定义车的模式已成为主流汽车设计及智能化功能架构模式,通过引入SOA的软件架构设计,使得现有的座舱软件、云端服务软件、App软件等众多功能模块的版本迭代频次日新月异,发版更…...
python实现ModBusTCP协议的server
python实现ModBusTCP协议的server是一件简单的事情,只要通过pymodbus、pyModbusTCP等模块都可以实现,本文采用pymodbus。 相关文章见: python实现ModBusTCP协议的client-CSDN博客 一、了解pymodbus的Server 1、pymodbus.server的模块 pym…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
Python的__call__ 方法
在 Python 中,__call__ 是一个特殊的魔术方法(magic method),它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时(例如 obj()),Python 会自动调用该对象的 __call__ 方法…...
el-amap-bezier-curve运用及线弧度设置
文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...
