leetCode 2578. 最小和分割 + 排序 + 贪心 + 奇偶分组(构造最优解)
2578. 最小和分割 - 力扣(LeetCode)
给你一个正整数 num
,请你将它分割成两个非负整数 num1
和 num2
,满足:
num1
和num2
直接连起来,得到num
各数位的一个排列。- 换句话说,
num1
和num2
中所有数字出现的次数之和等于num
中所有数字出现的次数。
- 换句话说,
num1
和num2
可以包含前导 0 。
请你返回 num1
和 num2
可以得到的和的 最小 值。
注意:
num
保证没有前导 0 。num1
和num2
中数位顺序可以与num
中数位顺序不同。
思路分析总结来自:(https://leetcode.cn/problems/split-with-minimum-sum/)
- 1.满足nums1 和 nums2的位数小于<= bit_len(num) / 2 尽可能最短
- 2.依次给nums1 和 nums2 分配较小的数给高位
(1)用一个 nums数组 来存放num的各个位的数字,然后 sort排序,再根据思路分析将其转化为num1 和 num2
class Solution {
public:int splitNum(int num) {vector<int> nums;while(num){nums.push_back(num%10);num = num / 10;}sort(nums.begin(),nums.end());int num1=0,num2=0;for(int i=0;i<nums.size();i++) {if(i%2==0) num1 = num1 * 10 + nums[i];else num2 = num2 * 10 + nums[i];}return num1 + num2;}
};
这段文字来自这篇博客:位运算&1,」」1,「「1
n&1 就是判断 n 是否为奇数.
- n 为奇数时,对应的二进制数最低位一定为1,n&1的结果就是1。
- n为偶数时,相应的最低位为0,n&1的结果就是0。
- n&1 ==1 或者写 n%2 == 1 或者写 n%2
可以将i%2 == 1 写成 i&1
class Solution {
public:int splitNum(int num) {vector<int> nums;while(num){nums.push_back(num%10);num = num / 10;}sort(nums.begin(),nums.end());int num1=0,num2=0;for(int i=0;i<nums.size();i++) {if(i&1) num2 = num2 * 10 + nums[i];else num1 = num1 * 10 + nums[i];}return num1 + num2;}
};
(2) 将num先转成字符串,接着根据思路分析,拼接两个字符串s1和s2,最后转成int,相加后返回
class Solution {
public:int splitNum(int num) {string s = to_string(num);sort(s.begin(),s.end());string s1,s2;for(int i=0;i<s.size();i++) {// if(i&1) s2 += s[i];// else s1 += s[i];i&1?s2 += s[i] : s1 += s[i];}return stoi(s1) + stoi(s2);}
};
(3)将num先转成字符串,接着根据思路分析,获得num1和num2,相加后返回
class Solution {
public:int splitNum(int num) {string s = to_string(num);sort(s.begin(),s.end());int num1=0,num2=0;for(int i=0;i<s.size();i++) {// if(i&1==1) num2 = num2 * 10 + s[i]-'0';// else num1 = num1 * 10 + s[i]-'0';i&1? num2 = num2 * 10 + s[i]-'0' : num1 = num1 * 10 + s[i]-'0';}return num1 + num2;}
};
(4)将(3)进行进一步优化,省去三目运算
class Solution {
public:int splitNum(int num) {string s = to_string(num);sort(s.begin(),s.end());int a[2]{};for(int i=0;i<s.size();i++) {// a[i % 2] = a[i % 2] * 10 + s[i] - '0'; a[i&1] = a[i&1] * 10 + s[i]-'0';}return a[0] + a[1];}
};
- 时间复杂度:O(mlogm),其中 m 为 num 转成字符串后的长度。
- 空间复杂度:O(m)
相关文章:

leetCode 2578. 最小和分割 + 排序 + 贪心 + 奇偶分组(构造最优解)
2578. 最小和分割 - 力扣(LeetCode) 给你一个正整数 num ,请你将它分割成两个非负整数 num1 和 num2 ,满足: num1 和 num2 直接连起来,得到 num 各数位的一个排列。 换句话说,num1 和 num2 中所…...
自定义实现图片裁剪
要实现这个功能,首先需要创建一个自定义的View,然后在该View中绘制背景框和裁剪后的图片。以下是一个简单的实现: 1. 创建一个名为CustomImageView的自定义View类,继承自View: import android.content.Context; impor…...

开发语言工具编程系统化教程入门和初级专辑课程上线
开发语言工具编程系统化教程入门和初级专辑课程上线 学习编程捷径:(不论是正在学习编程的大学生,还是IT人士或者是编程爱好者,在学习编程的过程中用正确的学习方法 可以达到事半功倍的效果。对于初学者,可以通过下面…...

【Truffle】二、自定义合约测试
一、准备测试 上期我们自己安装部署了truffle,并且体验了测试用例的整个测试流程,实际开发中,我们可以对自己的合约进行测试。 我们首先先明白自定义合约测试需要几个文件 合约文件:既然要测试合约,肯定要有合约的源码…...

场景交易额超40亿,海尔智家三翼鸟开始收获
文 | 螳螂观察 作者 | 余一 随着双十一的到来,国内的消费情绪再次被点燃。在这类大促之下,品牌们就像一个个天体,不断引动着市场潮汐,期待自己能触发更大的“海潮效应”。 所谓“海潮效应”是指,海水因天体的引力而…...

众和策略可靠吗?股票扛杆怎么玩?
可靠 股票扛杆是一种出资战略,经过假贷资金来增加出资金额,从而进步出资收益。这种战略在股票商场中被广泛运用,但一起也伴随着一定的危险。在本文中,咱们将从多个视点来剖析股票扛杆怎么玩。 首要,扛杆出资的原理是…...
解决连接Mysql出现ERROR 2013 (HY000): Lost connection to MySQL server at ‘waiting
在上一篇中解决Mysql ER_ACCESS_DENIED_ERROR: Access denied for user ‘root‘‘localhost‘ (using password: YES)-CSDN博客 写了mysql的密码报错问题,在执行 mysql -u root -p 出现了这个错误, ERROR 2013 (HY000): Lost connection to MySQL se…...
Hadoop YARN功能介绍--资源管理、调度任务
Hadoop YRAN介绍 YARN是一个通用资源管理系统平台和调度平台,可为上层应用提供统一的资源管理和 调度。 他的引入为集群在利用率、资源统一管理和数据共享等方面带来了好处。 1.资源管理系统 集群的硬件资源,和程序运行无关,比如内存、cu…...
从AlexNet到chatGPT的演进过程
一、演进 AlexNet(2012): AlexNet是深度学习领域的重要突破,包括5个卷积层和3个全连接层。使用ReLU激活函数和Dropout正则化,获得了ImageNet图像分类比赛的胜利。引入了GPU加速训练,大幅提高了深度神经网络…...

Unity如何实现bHaptics TrackSuit震动衣的SDK接入
前言 TrackSuit是bHaptisc公司旗下的一款震动衣,包括X16,X40等不同型号,是一款尖端的无线高级触觉背心,采用人体工程学设计,具有40个精确的触觉反馈点。通过无缝的跨平台支持和无限制、无滞后的游戏体验,增强您的VR冒险体验。用于PC或者VR游戏中高度还原真实射击触感。官…...

识别flink的反压源头
背景 flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头 反压的源头 首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,Task…...

Spring是如何解决bean循环依赖的问题的
在Spring框架中,循环依赖是指两个或多个Bean之间相互依赖,形成了一个闭环的依赖关系。当存在循环依赖时,Bean的创建过程会陷入死循环,导致应用程序无法启动或出现异常。 说到循环依赖,首先我先说说bean的三级缓存 在S…...

[移动通讯]【Carrier Aggregation-9】【 Radio Resource Control (RRC) Aspects】
前言: CA 分析辅助工具: UE Capabilities 目录: 总体流程 Radio Resource Control (RRC) Aspects SCell addition and removal Handover 一 总体流程 1.1 CA 总体流程 1.2 CA 和 NSA 区别 NSA 我理解也是一种特殊的CA 方案&…...

故障预测与健康管理(PHM)的由来以及当前面临的挑战
故障预测与健康管理(PHM)作为一项关键技术,旨在帮助企业在事故发生之前较长时间内实现故障预测与健康管理,达到“治未病”的效果。PHM的发展源于对设备可靠性和安全性的追求,以及对预测性维护的需求。然而,…...

【ChatGPT瀑布到水母】AI 在驱动软件研发的革新与实践
这里写目录标题 前言内容简介作者简介专家推荐读者对象目录直播预告 前言 计算机技术的发展和互联网的普及,使信息处理和传输变得更加高效,极大地改变了金融、商业、教育、娱乐等领域的运作方式。数据分析、人工智能和云计算等新兴技术,也在不…...
【Django】项目模型
Django的基本命令 django-admin 命令含义startproject启动Django项目startapp启动Django应用check检查项目完整性runserver本地运行项目shell进入Django项目的Python Shell环境test 进行Django用例测试makemigrations创建模型变更的迁移文件migrate执行makemigrations…...

字符集详解
常见字符集介绍 字符集基础知识: 计算机底层不可以直接存储字符的。 计算机中底层只能存储二进制(0、1) 。 二进制是可以转换成十进制的。 结论:计算机底层可以表示成十进制编号。计算机可以给人类字符进行编号存储,这套编号规则就是字符…...
Vert.x学习笔记-什么是Vert.x
Vert.x介绍 用官网的一句话来总结:Vert.x是用于在JVM上构建响应式应用程序的工具包,项目初期的目标是成为“JVM版的Node.js”,但是后续的发展逐渐偏离了初期的目标,变成了一个给JVM提供量身定制的异步编程基础框架的工具包。 Ver…...

AcWing 第127场周赛 构造矩阵
构造题目,考虑去除掉最后一行最后一列先进行考虑,假设除了最后一行和最后一列都已经排好了(你可以随便排),那么分析知最后一个数字由限制以外其他都已经确定了,无解的情况是k为-1 并且n,m的奇偶…...

Seata入门系列【15】@GlobalLock注解使用场景及源码分析
1 前言 在Seata 中提供了一个全局锁注解GlobalLock,字面意思是全局锁,搜索相关文档,发现资料很少,所以分析下它的应用场景和基本原理,首先看下源码中对该注解的说明: // 声明事务仅在单个本地RM中执行 //…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
k8s从入门到放弃之Pod的容器探针检测
k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...
精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑
精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑 在电子商务领域,转化率与网站性能是决定商业成败的核心指标。今天,我们将深入解析不同类型电商平台的转化率基准,探讨页面加载速度对用户行为的…...