2023NOIP A层联测21-异或
给定一长度为 N N N 的由非负整数组成的数组 a a a,你需要进行一系列操作,每次操作选择一个区间 [ l , r ] [l,r] [l,r],将 a [ l , r ] a_{[l,r]} a[l,r] 异或上 w w w。你需要将 a i a_i ai 全部变为 0 0 0。
求最小操作次数。
N ≤ 17 N\le17 N≤17
考虑两个左端点相同的修改 [ l , r 1 ] , [ l , r 2 ] ( r 1 < r 2 ) [l,r_1],[l,r_2](r_1<r_2) [l,r1],[l,r2](r1<r2),可以把它拆成 [ l , r 1 ] [l,r_1] [l,r1] 和 [ r 1 + 1 , r 2 ] [r_1+1,r_2] [r1+1,r2],次数相同。所以没有两个区间左端点相同,反过来右端点也不相同。
将 a a a 序列异或差分得到 b b b,其中 b i = a i ⊕ a i − 1 b_i=a_i\oplus a_{i-1} bi=ai⊕ai−1,区间修改就变成双点修改(区间非后缀)或单点修改(区间为后缀)。最后同样要求 b b b 全为 0 0 0。
把 N N N 个数抽象成 N N N 个点,修改就是在两个点之间连边(如果是单点修改,就是自环),一组方案由几个连通块组成。先暂时不管 w w w 的取值,考虑什么情况时会存在一个 w w w。
一个连通块(大小为 x x x)中的边数只可能有两种情况, x − 1 x-1 x−1(一棵树), x x x(一棵树加自环)。我们的目标是让最后连通块的数全为 0 0 0。
考虑树的情况,发现有解当且仅当连通块内的数异或和为 0 0 0。下证之。
必要性:每次操作都是双点修改,整个连通块内的异或和不变,而最后要求异或和为 0 0 0,那么一开始也必须是 0 0 0。
充分性:考虑把这些数按编号顺序排成一排,从前往后做操作,每次操作都把最前面的消掉了(变成 0 0 0),而最后应得到全 0 0 0 的序列,所以异或和必为 0 0 0。
对于有自环的情况,自环的操作把那个点改成一个适当的值,让除去自环的这棵树的异或和为 0 0 0,所以这无论如何都有解。
发现答案就是 N N N 减去异或和为 0 0 0 的子序列个数。现在目标是最大化这样的子序列个数。
可以用状压 DP 求解,先枚举状态 i i i,再枚举它的子集 s s s,若 s s s 的异或和为 0 0 0, d p i ← max ( d p i , d p i ⊕ s ) dp_i\gets\max(dp_i,dp_{i\oplus s}) dpi←max(dpi,dpi⊕s)。时间复杂度 O ( 3 n ) O(3^n) O(3n)。
注意要预处理出每个子集的异或和。
具体实现参照代码。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=(1<<17)+1;
int n,dp[N];
ll a[20],b[20],sum[N];
int main()
{freopen("xor.in","r",stdin);freopen("xor.out","w",stdout);scanf("%d",&n);for(int i=1;i<=n;i++) scanf("%lld",&a[i]),b[i]=a[i]^a[i-1];int N=1<<n;for(int i=0;i<N;i++){for(int j=0;j<n;j++){if(i>>j&1){sum[i]^=b[j+1];}}}for(int i=0;i<N;i++){for(int s=i;s;s=(s-1)&i){if(!sum[s]) dp[i]=max(dp[i],dp[i^s]+1);}}printf("%d",n-dp[N-1]);
}
相关文章:
2023NOIP A层联测21-异或
给定一长度为 N N N 的由非负整数组成的数组 a a a,你需要进行一系列操作,每次操作选择一个区间 [ l , r ] [l,r] [l,r],将 a [ l , r ] a_{[l,r]} a[l,r] 异或上 w w w。你需要将 a i a_i ai 全部变为 0 0 0。 求最小操作次数。…...
分布式存储系统Ceph应用组件介绍
1、 无中心架构分布式存储Ceph Ceph是一套开源的分布式存储系统。具有可靠性高,性能优良,可伸缩,与HDFS不同的地方在于,该架构中没有中心节点。 Ceph优点在于它不单单是存储,同时还充分利用了存储节点上的计算能…...
【数据结构】数组和字符串(十一):字符串的定义与存储(顺序存储、链式存储及其C语言实现)
文章目录 4.3 字符串4.3.1 字符串的定义与存储1. 顺序存储2. 链式存储3. C语言实现顺序存储4. C语言实现链式存储代码优化 4.3 字符串 字符串(String)是由零个或多个字符(char)顺序排列组成的有限序列,简称为串。例如 “good morning”就是由12个字符构成的一个字符…...
zk-Bench:SNARKs性能对比评估工具
1. 引言 JENS ERNSTBERGER等人2023年论文《zk-Bench: A Toolset for Comparative Evaluation and Performance Benchmarking of SNARKs》。 zk-Bench,定位为: 定位为首个公钥密码学性能评估基准测试框架和工具,重点关注通用ZKP系统的实测评…...
【Linux】NTP服务器配置、时间修改
查看当前系统时间date修改当前系统时间date -s "2018-2-22 19:10:30"查看硬件时间hwclock --show修改硬件时间hwclock --set --date "2018-2-22 19:10:30"同步系统时间和硬件时间hwclock --hctosys保存时钟clock –w1.设置NTP Server服务检查系统是否安装n…...
毕业设计基于SpringMVC+Mybatis+Bootstrap的电影院管理系统源码+数据库
<<电影院管理系统>> 电影院管理系统:SpringMVCJSPTomcatMybatisBootstrapJqueryAnimateCSSLayerJS 项目部署:该项目是IDEA版本,Maven项目 前端依赖: Bootstrap-3.4.1Animate.css- 4.1.1Jquery-3.6.0Layer-v3.5.1B…...
vantUI(Tabbar标签页)浏览器返回上一页的失效问题
在开发中遇到这样一个问题,由页面1切换到页面2,再点击浏览器的回退,无法回退到页面1。 开始以为是路由配置的有问题,但是子页面可以正常回退,因为replace只是替换路由,而不会往history栈中记录路由&#x…...
【算法】Prim算法(求最小生成树)
题目 给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。 求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。 给定一张边带权的无向图 G(V,E),其中 V 表示图中点的集合,E…...
go语言,yaml实现简单的workflow工作流
目录 1.创建一个yaml文件,名字可以是student.yaml 2.创建go文件测试 3.执行结果 本文章内容,只是一个简单的案例,但足够映射到一个大的项目中。 工作流作用:工作流的作用就是通过yaml配置文件,将关于本工作流的一个…...
BaiduMallServcie
说明 本文档指导业务开发步骤 BaiduMallServcie 说明一. 登录业务1.1 数据库设计1.1.1 管理员表1.1.2 角色表1.1.3 关联表 管理员表与角色表关联1.1.4 权限表1.1.5 关联表 角色表与权限表关联1.1.6 管理员登录日志表1.1.7 查询权限示例1.2 添加用户一. 登录业务 1.1 数据库设…...
vue3+jsx+antd的插槽写法之一
如果在jsx里面直接这样按照官方的写法是会报错的 正确写法是:...
Shell 学习之 if 命令
1. 执行流程 在 Shell 脚本中,if 是一个 控制流语句,用于进行条件判断,根据条件的结果执行相应的操作。 # 首先,Shell 会检查表达式 condition 返回的 boolean 值。 # 如果 condition 的值为真,则执行 then 代码块&a…...
android 同步 服务器 时间
要将 Android 设备与服务器同步时间,可以通过以下两种方式实现: NTP 协议同步时间 NTP(Network Time Protocol)是一种网络协议,用于同步计算机的时间。Android 设备可以使用 NTP 协议来同步服务器时间。 Android 应…...
10、电路综合-基于简化实频的宽带匹配电路设计方法
10、电路综合-基于简化实频的宽带匹配电路设计方法 网络综合和简化实频理论学习概述中的1-9介绍了SRFT的一些基本概念和实验方法,终于走到了SRFT的另一个究极用途,宽带匹配电路的设计。 1、之前的一些回顾与总结 之前也给出了一些电路综合的案例&…...
N-130基于springboot,vue校园社团管理系统
开发工具:IDEA 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 系统分前后台,项目采用前后端分离 前端技术:vueelementUI 服务端技术:springbootmybatis-plus 本系…...
Syntax Error: TypeError: this.getOptions is not a function的解决(Vue)
报错信息: TypeError: this.getOptions is not a function 这个是在运行项目是遇到的问题 这个报错是类型错误,this.getOptions 不是一个函数 。这个错误一般就是less-loader库里的错误。 主要是less-loader版本太高,不兼容this.getOptions…...
使用 kube-downscaler 降低Kubernetes集群成本
新钛云服已累计为您分享772篇技术干货 介绍 Kube-downscaler 是一款开源工具,允许用户定义 Kubernetes 中 pod 资源自动缩减的时间。这有助于通过减少非高峰时段的资源使用量来降低基础设施成本。 在本文中,我们将详细介绍 kube-downscaler 的功能、安装…...
LeetCode热题100——哈希表
哈希表 1.两数之和2.字母异位词分组3.最长连续序列 1.两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。可以按任意顺序返回答案。 // 题解思路:使用哈…...
Kubeadm
目录 绪论:实验步骤 1、环境准备 2、所有节点安装docker 3、所有节点安装kubeadm,kubelet和kubectl 4、部署K8S集群 5、部署 Dashboard 6、安装Harbor私有仓库 master(2C/4G,cpu核心数要求大于2) 192.168.…...
【Overload游戏引擎细节分析】PBR材质Shader---完结篇
PBR基于物理的渲染可以实现更加真实的效果,其Shader值得分析一下。但PBR需要较多的基础知识,不适合不会OpenGL的朋友。 一、PBR理论 PBR指基于物理的渲染,其理论较多,需要的基础知识也较多,我在这就不再写一遍了&…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
