当前位置: 首页 > news >正文

力扣日记10.31-【栈与队列篇】前 K 个高频元素

力扣日记:【栈与队列篇】前 K 个高频元素

日期:2023.10.31
参考:代码随想录、力扣

347. 前 K 个高频元素

题目描述

难度:中等

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

提示:

  • 1 <= nums.length <= 105
  • k 的取值范围是 [1, 数组中不相同的元素的个数]
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

题解

class Solution {
#define SOLUTION 2
public:vector<int> topKFrequent(vector<int>& nums, int k) {
#if SOLUTION == 1// 时间复杂度: O(n) + O(n) + O(nlogn) + O(k) = O(nlogn)// 空间复杂度: O(n+n)unordered_map<int, int> cnt;for (const auto& n: nums) {cnt[n]++;}// 将哈希表的内容复制到 vector// 使用迭代器范围构造函数(iterator range constructor)创建 sortedVector// 这个构造函数接受两个迭代器,它会遍历 cnt 中的元素,然后复制它们到 sortedVector 中vector<pair<int, int>> sortedVector(cnt.begin(), cnt.end());// 按第二个值的大小对 vector 进行排序(从大到小)sort(sortedVector.begin(), sortedVector.end(), [](const pair<int, int>& a, const pair<int, int>& b) { // 匿名函数作为比较器参数return a.second > b.second; // 前者大于后者时返回true,表示前者应该在后者前面(大在前、小在后)});// 取前k个元素int count = 0;vector<int> result;for (const auto& pair : sortedVector) {result.push_back(pair.first);count++;if (count >= k) break;}return result;}
#elif SOLUTION == 2// unordered_map + 小顶堆// O(nlogk), O(n+k)// 之所以用堆,是因为没必要对n个元素都进行排序,只需要维护前k个元素即可// 1. 首先用map遍历一遍数组,确定每个数出现的频率unordered_map<int, int> cnt;for (const auto& n: nums) {cnt[n]++;}// 2. 使用小顶堆遍历map,维护出现频率最高的前k个元素// 小顶堆:本质是一个二叉树,每个父结点的值小于子结点,即根结点的值是最小的,值从小到大排列// 关于为什么用小顶堆而不是用大顶堆:/*如果是大顶堆的话,由于其仅维护k个元素,每次push进元素时都需要pop掉根结点元素而根结点是值最大的元素,这样的话会导致最后大顶堆中都是出现频率最低的前k个元素所以要用小顶堆,每次pop元素弹出值最小的元素,维护出现频率最高的前k个元素*/// 小顶堆通过优先级队列实现priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;// 用固定大小为k的小顶堆,扫面所有频率的数值for (unordered_map<int, int>::iterator it = cnt.begin(); it != cnt.end(); it++) {pri_que.push(*it); // 把it指向的<key,value>放进队列if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为kpri_que.pop();}}// 3. 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组vector<int> result(k);for (int i = k - 1; i >= 0; i--) {result[i] = pri_que.top().first;pri_que.pop();}return result;}// 小顶堆class mycomparison {public:bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second; // 为什么是>(大的在前,小的在后???)}};
#endif
};

复杂度

  • 哈希map + 快排:
    • 时间复杂度:O(nlogn)
    • 空间复杂度:O(n)
  • 哈希map + 小顶堆
    • 时间复杂度:O(nlogk)
    • 空间复杂度:O(n)

思路总结

  • 解法1:哈希map + 快排
    • 哈希map不能直接排序,要转换为vector才能进行排序
      • 1.将哈希表的内容复制到 vector
      • 2.使用迭代器范围构造函数(iterator range constructor)创建 sortedVector
        • 这个构造函数接受两个迭代器,它会遍历 cnt 中的元素,然后复制它们到 sortedVector 中
        • vector<pair<int, int>> sortedVector(cnt.begin(), cnt.end());
      • 3.按第二个值的大小对 vector 进行排序(从大到小)
      sort(sortedVector.begin(), sortedVector.end(), [](const pair<int, int>& a, const pair<int, int>& b) { // 匿名函数作为比较器参数return a.second > b.second; // 前者大于后者时返回true,表示前者应该在后者前面(大在前、小在后)});
      
  • 解法2:哈希map + 小顶堆
    • 之所以用小顶堆而不用快排,是因为没必要对n个元素都进行排序,只需要维护前k个元素即可(快排需要对n个元素进行排序,O(nlogn),小顶堆每次pop和push一个元素只需要logk,即对所有元素的总时间复杂度为O(nlogk)
    • 思路步骤:
    • 1.首先用map遍历一遍数组,确定每个数出现的频率
    • 2.使用小顶堆遍历map,维护出现频率最高的前k个元素
      • 小顶堆:本质是一个二叉树,每个父结点的值小于子结点,即根结点的值是最小的,值从小到大排列
      • 关于为什么用小顶堆而不是用大顶堆:
        如果是大顶堆的话,由于仅维护k个元素,每次push进元素时都需要pop掉根结点元素
        而根结点是值最大的元素,这样的话会导致最后大顶堆中都是出现频率最低的前k个元素
        所以要用小顶堆,每次pop元素弹出值最小的元素,维护出现频率最高的前k个元素
      • 小顶堆通过优先级队列实现:其中比较器设置为"左值>右值"(可能与优先级队列的底层实现有关)—— 注意这与快排cmp是相反的,快排cmp“左值>右值"是从大到小降序排列,而优先级队列"左值>右值"是小顶堆(根小子大)
    • 3.找出前K个高频元素,因为小顶堆先弹出的是最小的(取first即元素的键),所以倒序来输出到数组
  • 学会小顶堆的实现以及小顶堆遍历的写法:
// 小顶堆实现
class mycomparison {
public:bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second;}
};
// 优先级队列定义与遍历
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;
// 参数1:优先级队列的元素类型,参数2:优先级队列自身类型,参数3:优先级队列的比较器(决定是小顶堆还是大顶堆)
for (unordered_map<int, int>::iterator it = cnt.begin(); it != cnt.end(); it++) {pri_que.push(*it); // 把it指向的<key,value>放进队列if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为kpri_que.pop();}
}

相关文章:

力扣日记10.31-【栈与队列篇】前 K 个高频元素

力扣日记&#xff1a;【栈与队列篇】前 K 个高频元素 日期&#xff1a;2023.10.31 参考&#xff1a;代码随想录、力扣 347. 前 K 个高频元素 题目描述 难度&#xff1a;中等 给你一个整数数组 nums 和一个整数 k &#xff0c;请你返回其中出现频率前 k 高的元素。你可以按 任意…...

TensorFlow案例学习:简单的音频识别

前言 以下内容均来源于官方教程&#xff1a;简单的音频识别&#xff1a;识别关键字 音频识别 下载数据集 下载地址&#xff1a;http://storage.googleapis.com/download.tensorflow.org/data/mini_speech_commands.zip 可以直接浏览器访问下载。 下载完成后将其解压到项目…...

css小程序踩坑记录

写标签设置距离 一直设置不动 写个双层 设置动了 神奇 好玩...

Android sqlite分页上传离线订单后删除

1、判断订单表的的总数是否大于0&#xff0c;如果大于0开始上传订单 public int getOrderCount() {String query "SELECT COUNT(*) FROM " TABLE_NAME;Cursor cursor db.rawQuery(query, null);int count 0;if (cursor.moveToFirst()) {count cursor.getInt(0);…...

Flask基本教程以及Jinjia2模板引擎简介

flask基本使用 直接看代码吧&#xff0c;非常容易上手&#xff1a; # 创建flask应用 app Flask(__name__)# 路由 app.route("/index", methods[GET]) def index():return "FLASK&#xff1a;欢迎访问主页&#xff01;"if __name__ "__main__"…...

Django实战项目-学习任务系统-兑换物品管理

接着上期代码框架&#xff0c;开发第5个功能&#xff0c;兑换物品管理&#xff0c;再增加一个学习兑换物品表&#xff0c;主要用来维护兑换物品&#xff0c;所需积分&#xff0c;物品状态等信息&#xff0c;还有一个积分流水表&#xff0c;完成任务奖励积分&#xff0c;兑换物品…...

jmeter和postman你选哪个做接口测试?

软件测试行业做功能测试和接口测试的人相对比较多。在测试工作中&#xff0c;有高手&#xff0c;自然也会有小白&#xff0c;但有一点我们无法否认&#xff0c;就是每一个高手都是从小白开始的&#xff0c;所以今天我们就来谈谈一大部分人在做的接口测试&#xff0c;小白变高手…...

mac版本 Adobe总是弹窗提示验证问题如何解决

来自&#xff1a; mac软件下载macsc站 mac电脑使用过程中总是弹出Adobe 的弹窗提示&#xff0c;尤其是打开Adobe的软件&#xff0c;更是频繁的弹出提示&#xff1a; Your Adobe app is not genuine. Adobe reserves the right to disable this software after a 0 grace period…...

钡铼技术ARM工控机在机器人控制领域的应用

ARM工控机是一种基于ARM架构的工业控制计算机&#xff0c;用于在工业自动化领域中进行数据采集、监控、控制和通信等应用。ARM&#xff08;Advanced RISC Machine&#xff09;架构是一种低功耗、高性能的处理器架构&#xff0c;广泛应用于移动设备、嵌入式系统和物联网等领域。…...

HTML+CSS+JS实现计算器

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;程序员老茶 &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开心好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;…...

Git工作原理和常见问题处理方案

博客定位Git工作区域工作区域划分暂存区设计目的 Git基本操作核心操作初始化和配置指令 HEAD指针Git版本回滚指令介绍reset模式reset hard使用场景reset soft使用场景reset mixed使用场景reset使用注意事项checkout使用场景 Git分支管理什么是分支分支应用场景分支相关指令被合…...

C++-实现一个简单的菜单程序

C-实现一个简单的菜单程序 1&#xff0c;if-else语句实现1.1&#xff0c;代码实现1.2&#xff0c;功能检测 2&#xff0c;switch语句实现2.1&#xff0c;代码实现2.2&#xff0c;功能检测 1&#xff0c;if-else语句实现 实现一个简单的菜单程序&#xff0c;运行时显示"Men…...

Git更新 fork 的仓库

文章目录 确保本地仓库是最新的配置上游存储库(remote upstream)获取上游存储库的更改合并上游存储库的更改推送更改到你 fork 的仓库 确保本地仓库是最新的 在命令行中&#xff0c;导航到存储库的本地副本所在的目录&#xff0c;并执行以下命令&#xff1a; # 切换到主分支 …...

chorme安装esay scholar及chrome 无法从该网站添加应用、扩展程序和用户脚本解决方案

问题描述 如题&#xff0c;博主想安装easy scholar用于查询论文的分区&#xff0c;结果安装了半天一直出现chrome 无法从该网站添加应用、扩展程序和用户脚本解决方案的问题。 解决方案 先从这个网址下载&#xff1a;https://www.easyscholar.cc/download 然后对下载好的文…...

数据库-扩展语句,约束方式

扩展语句&#xff1a; 例&#xff1a; 自增长&#xff1a; auto_increment:表示该字段可以自增长&#xff0c;默认从一开始&#xff0c;每条记录会自动递增1 复制&#xff1a; 通过like这个语法直接复制ky32的表结构&#xff0c;只能复制表结构&#xff0c;不能复制表里面的…...

精密数据工匠:探索 Netty ChannelHandler 的奥秘

通过上篇文章&#xff08;Netty入门 — Channel&#xff0c;把握 Netty 通信的命门&#xff09;&#xff0c;我们知道 Channel 是传输数据的通道&#xff0c;但是有了数据&#xff0c;也有数据通道&#xff0c;没有数据加工也是没有意义的&#xff0c;所以今天学习 Netty 的第四…...

Python四种基本结构的操作

列表 列表的创建有两种方法 SampleList [] SampleList list() 列表中元素的添加 append(obj)&#xff1a;在列表末尾添加元素obj extend(seq)&#xff1a;在列表末尾添加多个值&#xff0c;使用extend()函数&#xff0c;seq是一个可迭代对象&#xff0c;否则报错。 Inser…...

Eureka:com.netflix.discovery.TimedSupervisorTask - task supervisor timed out

1、原因是spring cloud netflix中&#xff0c;某个服务挂掉了或者是执行某个任务时间过长&#xff0c;而没有发送给Eureka心跳 &#xff0c;导致调用不到指定的服务&#xff0c;所以检查被调用服务器是否有问题。 2、有可能是某一个微服务自身内部G了&#xff0c;导致没有向eu…...

1.spark standalone环境安装

概述 环境是spark 3.2.4 hadoop版本 3.2.4&#xff0c;所以官网下载的包为 spark-3.2.4-bin-hadoop3.2.tgz 在具体安装部署之前&#xff0c;需要先下载Spark的安装包&#xff0c;进到 spark的官网&#xff0c;点击download按钮 使用Spark的时候一般都是需要和Hadoop交互的&a…...

【问题解决】 avue dicUrl 动态参数加载字典数据(已解决)

事情是这样的&#xff0c;用了avue-crud组件&#xff0c;配置了一个option。     现在有一列source属性要展示为 多选的下拉框 &#xff0c;当然问题不在这而在于&#xff0c;选项是需要根据同级别属性id去拿的。也就是option.column.source 的配置中 需要该行的option.col…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...