当前位置: 首页 > news >正文

C++ Dijkstra 最短路径求解算法的两种实现方案

迪杰斯特拉算法(Diikstra) 是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。

核心思想,搜索到某一个顶点后,更新与其相邻顶点的权重。顶点权重的数据含义表示从起始点到此点的最短路径长度(也就是经过的所有边的权重之和)。DJ 算法搜索时,每次选择的下一个顶点是所有权重值最小的顶点,其思想是保证每一次选择的顶点和当前顶点权重都是最短的。所以,DJ是基于贪心思想。

矩阵存储

常规时间复杂度:O(n),可以使用堆优化优先队列,时间复杂度降低到O(logN)。缺点是对于稀疏图而言空间浪费严重。

#include <bits/stdc++.h>
using namespace std;//矩阵,存储图
int graph[100][100];
//顶点、边数
int v,e;
//优先队列,使用数组
int pri[100];
//存储起点到其它顶点之间的最短距离
int dis[100];
//设置无穷大常量
int const INF =INT_MAX;/*
*初始化函数
*/
void init()
{//初始化图中顶点之间的关系for(int i=1; i<=v; i++){for(int j=1; j<=v; j++){if( i==j ){//自己和自己的关系(权重)为 0graph[i][j]=0;}else{//任意两点间的距离为无穷大graph[i][j]=INF;}}}//交互式确定图中顶点之间的关系int f,t,w;for( int i=1; i<=e; i++ ){cin>>f>>t>>w;graph[f][t]=w;}//初始设编号为 1 的顶点为起始点,根据顶点的关系初始化起点到其它顶点之间的距离for(int i=1; i<=v; i++){dis[i]=graph[1][i];}//初始化优先队列(也称为候选队列)for(int i=1; i<=v; i++ ){if(i==1){//起始顶点默认为已经候选pri[i]=1;continue;}//其它顶点都可候选pri[i]=0;}}/*
*
*Dijkstra算法
*/
void dijkstra()
{for(int i=1; i<=v; i++){//从候选队列中选择一个顶点,要求到起始顶点的距离为最近的int u=-1;int mi=INF;for( int j=1; j<=v; j++ ){if(pri[j]==0 && dis[j]<mi){mi=dis[j];u=j;}}if(u!=-1)//找到后设置为已经候选pri[u]=1;else //找不到就结束break;//查找与此候选顶点相邻的顶点,且更新邻接点与起点之间的距离//相当于在此顶点基础上向后延长for( int j=1; j<=v; j++ ){if(  graph[u][j]!=INF ){//找到相邻顶点if(dis[j]>dis[u]+graph[u][j]  ){//更新dis[j]=dis[u]+graph[u][j];}}}}}/*
*
*显示最后的结果
*/
void show()
{for(int i=1; i<=v; i++){cout<<dis[i]<<"\t";}
}int main()
{cin>>v>>e;init();dijkstra();show();return 0;
}
//测试用例
6  9
1 2 1
1 3 12
2 3 9
2 4 3
3 5 5
4 3 4
4 5 13
4 6 15
5 6 4
//输出
0  1  8  4  13  17

邻接表

整个时间复杂度可以优化到O(M+N)logN。在最坏的情况下M(边数)就是N(顶点数),这样的话(M+M)logN要比N还要大。但是大多数情况下并不会有那么多边,因此(M+M)logN要比N小很多。

#include <bits/stdc++.h>using namespace std;
/*
* 顶点类型
*/
struct Ver
{//顶点编号int vid=0;//第一个邻接点int head=0;//起点到此顶点的距离(顶点权重),初始为 0 或者无穷大int dis=0;//重载函数bool operator<( const Ver & ver ) const{return this->dis<ver.dis;}void desc(){cout<<vid<<" "<<dis<<endl;}
};/*
* 边
*/
struct Edge
{//邻接点int to;//下一个int next=0;//权重int weight;
};class Graph
{
private:const int INF=INT_MAX;//存储所有顶点Ver vers[100];//存储所有边Edge edges[100];//顶点数,边数int v,e;//起点到其它顶点之间的最短距离int dis[100];//优先队列priority_queue<Ver> proQue;public:Graph( int v,int e ){this->v=v;this->e=e;init();}void init(){for(int i=1;i<=v;i++){//重置顶点信息vers[i].vid=i;vers[i].dis=INF;vers[i].head=0;}int f,t,w;for(int i=1; i<=e; i++){cin>>f>>t>>w;//设置边的信息edges[i].to=t;edges[i].weight=w;//头部插入edges[i].next=vers[f].head;vers[f].head=i;}for(int i=1; i<=v; i++){dis[i]=vers[i].dis;}}void dijkstra(int start){//初始化优先队列,起点到起点的距离为 0vers[start].dis=0;dis[start]=0;proQue.push(vers[start]);while( !proQue.empty() ){//出队列Ver ver=proQue.top();ver.desc();proQue.pop();//找到邻接顶点 i 是边集合索引号for( int i=ver.head; i!=0; i=edges[i].next){int v=edges[i].to;//更新距离if( vers[ v ].dis > ver.dis + edges[i].weight ){vers[ v ].dis = ver.dis+edges[i].weight;dis[ v ]= vers[ v ].dis;//入队列proQue.push( vers[v] );}}}}void show(){for(int i=1; i<=v; i++){cout<<dis[i]<<"\t";}}};int main()
{int v,e;cin>>v>>e;Graph graph(v,e);int s;cin>>s;graph.dijkstra(s);graph.show();return 0;
}

相关文章:

C++ Dijkstra 最短路径求解算法的两种实现方案

迪杰斯特拉算法(Diikstra) 是由荷兰计算机科学家狄克斯特拉于1959 年提出的&#xff0c;因此又叫狄克斯特拉算法。 核心思想&#xff0c;搜索到某一个顶点后&#xff0c;更新与其相邻顶点的权重。顶点权重的数据含义表示从起始点到此点的最短路径长度&#xff08;也就是经过的…...

因存在色情内容,夸克被罚50万元

媒体经济的繁荣、自媒体、直播等各种形式的信息传播疯狂发展&#xff0c;但是各种形式的信息资源大规模生产时&#xff0c;“色情”&#xff0c;“暴力”的图像和视频不可控的滋生&#xff0c;特别是某些 APP 或浏览器。一旦打开&#xff0c;满屏都是“哥哥&#xff0c;快来啊”…...

汽车EDI:福特Ford EDI项目案例

项目背景 福特&#xff08;Ford&#xff09;是世界著名的汽车品牌&#xff0c;为美国福特汽车公司&#xff08;Ford Motor Company&#xff09;旗下的众多品牌之一。此前的文章福特FORD EDI需求分析中&#xff0c;我们已经了解了福特Ford EDI 的大致需求&#xff0c;本文将会介…...

正则表达式的使用实例

正则表达式的使用实例 1- 表示2- 实例 1- 表示 1, [:digit:] 表示0-9全部十个数字 //等价于 0123456789&#xff0c; 而不等价于[0123456789] 2, [[:digit:]] 表示任意一个数字 \{m,n\} 表示其前面的字符出现最少m次&#xff0c;最多n次的情况 \{3,\} 其前面的字符出…...

STM智能小车——OLED实现测速小车

目录 1. 测速模块 2. 测试原理和单位换算 3. 定时器和中断实现测速开发和调试代码 4. 小车速度显示在OLED屏 1. 测速模块 用途&#xff1a;广泛用于电机转速检测&#xff0c;脉冲计数,位置限位等。有遮挡&#xff0c;输出高电平&#xff1b;无遮挡&#xff0c;输出低电平接线…...

pod基本概念

目录 pod基本概念 pause容器 Pod分类&#xff1a; Pod容器的分类 1、基础容器&#xff08;infrastructure container&#xff09; 2、初始化容器&#xff08;initcontainers&#xff09; 3、应用容器&#xff08;Maincontainer&#xff09; 镜像拉取策略&#xff08;im…...

SQL Server 中定时调度调用存储过程

要在SQL中定时调度调用存储过程&#xff0c;你可以使用SQL Server代理&#xff08;如果你正在使用SQL Server数据库&#xff09;。下面是一些步骤来配置SQL Server代理以定时调度调用存储过程&#xff1a; 打开SQL Server Management Studio (SSMS) 并连接到你的SQL Server实例…...

SpringCloud(三) Ribbon负载均衡

SpringCloud(二) Eureka注册中心的使用-CSDN博客 在SpringCloud(二)中学习了如何通过Eureka实现服务的注册和发送,从而通过RestTemplate实现不同微服务之间的调用,加上LoadBalance注解之后实现负载均衡,那负载均衡的原理是什么呢? 目录 一, 负载均衡 1.1 负载均衡原理 1.2 源…...

vue2:路由前置守卫无法获取到this.$store.state.xxx

在获取到vuex的数据时候&#xff0c;想在router目录下的index.js文件去获取到vuex仓库中声明的全局变量&#xff0c;但是通过this.$store.stote.xxx去获取的时候&#xff0c;报错提示&#xff1a;$store未定义 一、store/index.js const store new Vuex.Store({state: {// 属…...

Unity的碰撞检测(五)

温馨提示&#xff1a;本文基于前一篇“Unity的碰撞检测(四)​​​​​​​”继续探讨两个游戏对象具备刚体的BodyType均为Dynamic&#xff0c;但是Collision Detection属性不同的碰撞检测&#xff0c;阅读本文则默认已阅读前文。 &#xff08;一&#xff09;测试说明 在基于两…...

Flutter笔记:Flutter的应用生命周期状态(lifecycleState)管理

Flutter笔记 Flutter的应用生命周期状态&#xff08;lifecycleState&#xff09;管理 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/…...

代碼隨想錄算法訓練營|第五十四天|300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组。刷题心得(c++)

讀題 300.最长递增子序列 看完代码随想录之后的想法 思想上很簡單&#xff0c;dp[i]表示i之前的包括i的numbers[i]節尾的最長上升子序列的長度 並且透過兩層迴圈&#xff0c;一層遍歷全部&#xff0c;一層遍歷到i&#xff0c;透過比較當前dp[i]還是dp[j] 1哪個比較大&…...

正点原子嵌入式linux驱动开发——Linux 串口RS232/485/GPS 驱动

串口是很常用的一个外设&#xff0c;在Linux下通常通过串口和其他设备或传感器进行通信&#xff0c;根据 电平的不同&#xff0c;串口分为TTL和RS232。不管是什么样的接口电平&#xff0c;其驱动程序都是一样的&#xff0c;通过外接RS485这样的芯片就可以将串口转换为RS485信号…...

HDFS工作流程和机制

HDFS写数据流程&#xff08;上传文件&#xff09; 核心概念--Pipeline管道 HDFS在上传文件写数据过程中采用的一种传输方式。 线性传输&#xff1a;客户端将数据写入第一个数据节点&#xff0c;第一个数据节点保存数据之后再将快复制到第二个节点&#xff0c;第二节点复制给…...

CMMI/ASPICE认证咨询及工具服务

服务概述 质量专家戴明博士的名言“如果你不能描述做事情的过程&#xff0c;那么你不知道你在做什么”。过程是连接有能力的工程师和先进技术的纽带&#xff0c;因此产品开发过程直接决定了产品的质量和研发的效率。 经纬恒润可结合多体系要求&#xff0c;如IATF16949\ISO26262…...

【NI-DAQmx入门】计数器

1.计数器的作用 NI产品的计数器一般来说兼容TTL信号&#xff0c;定义如下&#xff1a;0-0.8V为逻辑低电平&#xff0c;2~5V为高电平&#xff0c;0.8-2V为高阻态&#xff0c;最大上升下降时间为50ns。 计数器可以感测上升沿&#xff08;从逻辑低到逻辑高的转变&#xff09;和下降…...

Python爬取读书网的图片链接和书名并保存在数据库中

一个比较基础且常见的爬虫&#xff0c;写下来用于记录和巩固相关知识。 一、前置条件 本项目采用scrapy框架进行爬取&#xff0c;需要提前安装 pip install scrapy# 国内镜像 pip install scrapy -i https://pypi.douban.com/simple 由于需要保存数据到数据库&#xff0c;因…...

js解决加油站

在一条环路上有 n 个加油站&#xff0c;其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车&#xff0c;从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#xff0c;开始时油箱为空。 给定两个整数数组 gas 和 cost &…...

【c++|opencv】二、灰度变换和空间滤波---5.中值滤波

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 1. 中值滤波 #include<iostream> #include<opencv2/opencv.hpp> #include"Salt.h"using namespace cv; using namespace std;voi…...

python之pytorch多进程

目录 1、创建并运行并行进程 2、使用队列&#xff08;Queue&#xff09;来共享数据 3、进程池 4、进程锁 5、比较使用多进程和使用单进程执行一段代码的时间消耗 6、共享变量 多进程是计算机科学中的一个术语&#xff0c;它是指同时运行多个进程&#xff0c;这些进程可以…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...