当前位置: 首页 > news >正文

深度学习_2 数据操作之数据预处理

数据操作

机器学习包括的核心组件有:

  1. 可以用来学习的数据(data);
  2. 如何转换数据的模型(model);
  3. 一个目标函数(objective function),用来量化模型的有效性;
  4. 调整模型参数以优化目标函数的算法(algorithm)。

我们要从数据中提取出特征,机器学习、深度学习通过特征来进一步计算得到模型。因此下面主要介绍的是对数据要做哪些操作。

基本操作

深度学习里最多操作的数据结构是N维的数组。

0维:一个数,一个标量,比如1.

1维:比如一个一维数组,他的数据是一个一维的向量(特征向量)。

2维:比如二维数组(特征矩阵)。

当然还有更多维度,比如视频的长,宽,时间,批量大小,通道……

如果我们想创建这样一个数组,需要明确的因素:

  1. 数组结构,比如3*4.
  2. 数组数据类型,浮点?整形?
  3. 具体每个元素的值。

访问元素的方式:

1698545535004

1:3 是左闭右开,表示不包含第3行。

双冒号是跳着访问,后跟步长。比如 ::3 表示从第0行开始访问,每3行访问一次。

明白了这些,那接下来我们就创建一个数组。在机器学习中这种数据的容器一般被称作张量.

创建张量

这部分代码在 jupyter/pytorch/chapter_preliminaries/ndarray.ipynb 里。

在其中可以运行尝试代码部分,创建一维张量:

import torch
X = torch.arange(12) 	# 自动创建 0-11 的一维张量。输入 X 查看 X 内元素数据,输出:
# tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
X.shape					# 查看向量形状。输出 torch.Size([12]),指长12的一维向量
X.numel()				# 只获取长度,输出12
X = X.reshape(3, 4)		# 重新改成了3行4列形状。变成了0123 4567 891011
torch.zeros((2, 3, 4))	# 创建了一个形状为(2,3,4)的全0张量
# tensor([[[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]],
# 
#         [[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]]])
# torch.ones 同理,是全1的
# torch.randn 是取随机数,随机数是均值=0,方差=1的一个高斯分布中取
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])	# 给定值创建
torch.exp(X)			# 求e^x中每个元素值得到的新张量

reshape 很有意思,它不是复制原数组后重新开辟了一片空间,而是还是对原数组元素的操作(只不过原来是连续12个数,现在我们把他们视作4个一行的3行元素。存储空间都是连续的)。因此如果我们对 reshape 后的数组赋值,原数组值也会改变。

算术运算

对于两个相同形状的向量可以进行+ - * / **(求幂运算)运算。

x = torch.tensor([1.0, 2, 4, 8])	# 1.0 为了让这个数组变成浮点数组
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y  # **运算符是求幂运算
# Output: 
(tensor([ 3.,  4.,  6., 10.]),tensor([-1.,  0.,  2.,  6.]),tensor([ 2.,  4.,  8., 16.]),tensor([0.5000, 1.0000, 2.0000, 4.0000]),tensor([ 1.,  4., 16., 64.]))
x==y								# 每一项分别判断是否相等。我试了一下,数据类型不影响。2.0==2
x.sum()								# 所有元素求和
张量连接
X = torch.arange(12, dtype=torch.float32).reshape((3,4))	# 创建 float32 位的张量
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)			# 行和列两个维度的拼接
# Output: 
(tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[ 2.,  1.,  4.,  3.],[ 1.,  2.,  3.,  4.],[ 4.,  3.,  2.,  1.]]),tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],[ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],[ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]]))
# 这里我看到弹幕前辈的讲解,感觉很受用。行是样例,列是特征属性,这个类似 MySQL 的关系数据库理解
广播机制

即使两个张量形状不同,也有可能通过广播机制进行按元素操作。

a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
# Output: 
(tensor([[0],[1],[2]]),tensor([[0, 1]]))a + b			# 把a按列复制2份,b按行复制3份,都变成3*2的张量进行操作
# Output:
tensor([[0, 1],[1, 2],[2, 3]])
索引
X[-1], X[1:3]						# 这里和前面介绍的概念一样。-1 是倒数第一个元素(一个n-1维度张量),1:3 是第2,第3个元素不包括第4个元素。
# Output:
(tensor([ 8.,  9., 10., 11.]),tensor([[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]]))
X[1,2]=9							# 写入
X[0:2, :] = 12						# 批量写入,给0-1行,所有列写成12
X
# Output:
tensor([[12., 12., 12., 12.],[12., 12., 12., 12.],[ 8.,  9., 10., 11.]])
节省内存

有一些操作会分配新内存。比如 Y=Y+X,并不是直接在 Y 的原地址上加了X,而是在新地址上计算得到 Y+X,让 Y 指向新地址。

可以通过 id(X) 函数来查看地址。

Y[:]=Y+X 或者 Y+=X 会在原地执行计算,Y 地址不变。

类型转换

转换为 numpy 张量:A=X.numpy()

张量转换为标量:

a=torch.tensor([3.5])
a.item()				# 3.5
float(a)				# 3.5
int(a)					# 3

数据预处理

实际处理数据的时候我们并不是从张量数据类型开始的,我们可能得到一个 excel 文件,自己把它转换成 python 张量。以及在转换之前,我们可能对数据进行预处理,比如把其中的空值统一赋值为0之类的操作。以下是转换步骤。

首先我们创建一个 csv 文件作为原始数据集。

import osos.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')  # 列名f.write('NA,Pave,127500\n')  # 每行表示一个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')

三个属性分别是 room 数量,走廊状态(比如铺了地板),价格。

然后我们把这个数据读入 python,加载原始数据集。

# 如果没有安装pandas,只需取消对以下行的注释来安装pandas
# !pip install pandas
import pandas as pddata = pd.read_csv(data_file)

这个数据集里还是有很多 NaN 项的,我们要对其进行修改替换。数值类典型处理方式是插值删除

首先最后一列数据是完整不需要修改的,那么我们只要处理前两列,我们把前两列数据单独拿出来做完处理最后进行张量拼接。

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]

然后我们把 NumEooms 中的 NaN 值用均值替代,

inputs = inputs.fillna(inputs.mean(numeric_only=True))
print(inputs)
# Output:NumRooms Alley
0       3.0  Pave
1       2.0   NaN
2       4.0   NaN
3       3.0   NaN

对于 Alley 列,只有两种状态:NaN 和 Pave。我们用 pandas 的方法,把 NaN 也视作一个类,自动拆成两列设置值。

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
# Output:NumRooms  Alley_Pave  Alley_nan
0       3.0           1          0
1       2.0           0          1
2       4.0           0          1
3       3.0           0          1

最后,我们将前两列处理后得到的结果与最后一列转换为张量后进行拼接。

import torchX = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
y=y.reshape(4,1)
torch.cat((X,y),dim=1)
# Output:
tensor([[3.0000e+00, 1.0000e+00, 0.0000e+00, 1.2750e+05],[2.0000e+00, 0.0000e+00, 1.0000e+00, 1.0600e+05],[4.0000e+00, 0.0000e+00, 1.0000e+00, 1.7810e+05],[3.0000e+00, 0.0000e+00, 1.0000e+00, 1.4000e+05]], dtype=torch.float64)

相关文章:

深度学习_2 数据操作之数据预处理

数据操作 机器学习包括的核心组件有: 可以用来学习的数据(data);如何转换数据的模型(model);一个目标函数(objective function),用来量化模型的有效性&…...

在美团和阿里6年,很难却也真实...

先简单的说下,本人6年工作经验,曾就职于某大型国企,公司研究院成员,也就职过美团担任高级测试开发工程师,有丰富的高并发大型项目经验。 后端高并发、高性能、高可用性开发,自动化测试框架开发以及软件自动…...

2、NLP文本预处理技术:词干提取和词形还原

一、说明 在上一篇文章中,我们解释了文本预处理的重要性,并解释了一些文本预处理技术。在本文中,我们将介绍词干提取和词形还原主题。 词干提取和词形还原是两种文本预处理技术,用于将单词还原为其基本形式或词根形式。这些技术的…...

Fabric官方示例测试网络搭建

目录 一、参考文档二、环境依赖三、Fabric源码安装3.1、创建链目录3.2、下载源码3.3、修改安装脚本3.4、开始安装3.4.1、执行安装脚本3.4.2、手动下载ca和二进制配置包 四、启动测试网络五、使用测试网络5.1、创建应用通道5.2、部署链码5.3、发送交易 六、关闭测试网络 一、参考…...

ubuntu20.04 conda pack 打包虚拟环境,直接将其用到其他终端

在本机ubuntu20.04下配置的虚拟环境,想到将其整个放到新建的docker(ubuntu20.04)下使用,操作步骤如下: # 一、在ubuntu1下打包虚拟环境 # 安装conda-pack pip install conda-pack# 进入需要打包的虚拟环境,这里将目标虚拟环境名称为goal_env…...

云原生-AWS EC2使用、安全性及国内厂商对比

目录 什么是EC2启动一个EC2实例连接一个实例控制台ssh Security groups规则默认安全组与自定义安全组 安全性操作系统安全密钥泄漏部署应用安全元数据造成SSRF漏洞出现时敏感信息泄漏网络设置错误 厂商对比参考 本文通过实操,介绍了EC2的基本使用,并在功…...

【Proteus仿真】【Arduino单片机】简易电子琴

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使用无源蜂鸣器、按键等。 主要功能: 系统运行后,按下K1-K7键发出不同音调。 二、软件设计 /* 作者:嗨小易&a…...

QT5.15.2 for Android 真机调试

一、准备就绪 1、一台安卓手机 1)手机需要进入开发者选项 2)准备一根USB线,需要用usb线连接电脑 2、QT5需要 Android搭建好环境(教程可以访问我另一篇文章) 二、调试 1、用usb线连接好电脑并进入开发者选项&…...

Mysql my.cnf配置文件参数详解

Linux 操作系统中 MySQL 的配置文件是 my.cnf,一般会放在 /etc/my.cnf 或 /etc/mysql/my.cnf 目录下。 如果你使用 rpm 包安装 MySQL 找不到 my.cnf 文件,可参考如下: 第一步: 通过cd命令 cd /usr/share/mysql 来到这个目录&#…...

linux下构建rocketmq-dashboard多架构镜像——筑梦之路

接上篇:linux上构建任意版本的rocketmq多架构x86 arm镜像——筑梦之路-CSDN博客 这里来记录下构建rocketmq-dashboard多架构镜像的方法步骤。 当前rocketmq-dashboard只有一个版本,源码地址如下: https://dist.apache.org/repos/dist/rele…...

git,ssh,sourcetree代码管理

安装Git并建立与GitHub的ssh连接 1、安装git,设置git的用户信息(需要通过用户信息来显示你是谁) 2、配置SSH, 因为本地Git仓库和GitHub仓库之间的传输是通过SSH加密传输的,GitHub需要识别是否是你推送,Git…...

Jenkins中解决下载maven包巨慢的问题

背景介绍 我们在使用jenkins构建maven项目时由于依赖很多第三方jar包,默认会从maven中央仓库下载,由于maven中央仓库服务器是国外的,所以下载很慢,甚至会超时 解决办法 增加jenkins maven 源配置 如下图所示,增加m…...

Redis(11)| 持久化AOF和RDB

一、AOF(Append Only File) Redis 每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里,然后重启 Redis 的时候,先去读取这个文件里的命令,并且执行它。 注意:只会记录写操作命令&am…...

ZYNQ实验---IQ调制实现SSB PART2

一、前言 本文实验在ZYNQ实验—IQ调制实现SSB PART1的基础上进行优化完善。 下图为IQ调制实现SSB PART1中设想实现设计框图 该图设计存在的几个问题: PC-PS的UDP传输存在丢包中断控制发包实际不适合流数据的传输采用的BRAM模块可以存储的空间较小,PC…...

机器学习-特征工程

一、特征工程介绍 1.1 什么是特征 数值特征(连续特征)、文本特征(离散特征) 1.2 特征的种类 1.3 特征工程 特征是机器学习可疑直接使用的,模型和特征之间是一个循环过程; 实际上特征工程就是将原始数据…...

大数据技术之集群数据迁移

文章目录 数据治理之集群迁移数据 数据治理之集群迁移数据 准备两套集群,我这使用apache集群和CDH集群。 启动集群 启动完毕后,将apache集群中,hive库里dwd,dws,ads三个库的数据迁移到CDH集群 在apache集群里hosts加上CDH Namenode对应域名并…...

CF1265E Beautiful Mirrors

CF1265E Beautiful Mirrors 洛谷CF1265E Beautiful Mirrors 题目大意 Creatnx \text{Creatnx} Creatnx有 n n n面魔镜,每天她会问一面镜子:“我漂亮吗?”,第 i i i面魔镜有 p i 100 \dfrac{p_i}{100} 100pi​​的概率告诉 Creat…...

软件测试/测试开发丨利用ChatGPT自动生成架构图

点此获取更多相关资料 简介 架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰…...

Java学习笔记(六)——面向对象编程(基础)

一、类与对象 (一)类与对象的概念 (二)对象内存布局 ​编辑 对象分配机制 ​编辑 (三)属性/成员变量 (四)创建对象与访问属性 二、成员方法 (一)方法…...

0基础学习PyFlink——个数滚动窗口(Tumbling Count Windows)

大纲 Tumbling Count WindowsmapreduceWindow Size为2Window Size为3Window Size为4Window Size为5Window Size为6 完整代码参考资料 之前的案例中,我们的Source都是确定内容的数据。而Flink是可以处理流式(Streaming)数据的,就是…...

什么是VR全景相机?如何选择VR全景相机?

VR全景相机的定义、原理及特点 定义:VR全景相机是利用特殊镜头设计和图像处理技术,能够捕捉到360度全方位、无死角的高清影像,并通过虚拟现实技术将用户带入沉浸式全景环境的相机设备。 原理:VR全景相机通过集成多个鱼眼镜头&am…...

交叉编译tcpdump工具

1.导出交叉编译工具链 export PATH$PATH:/opt/rockchip/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf/bin 下载源码包libpcap-1.10.5,配置、并编译安装。 github仓库地址 ./configure --hostarm-linux CCarm-linux-gnueabihf-gcc --prefix$PWD/install …...

EMS只是快递那个EMS吗?它跟能源有什么关系?

在刚刚落幕的深圳人工智能终端展上,不少企业展示了与数字能源相关的技术和服务,其中一项关键系统——EMS(Energy Management System,能量管理系统)频频亮相。这个看似低调的名字,实际上正悄然成为未来能源管…...

微调数据处理

1. 数据爬取 我们将爬取的1G文件都保存到all_m_files目录下 查看原始数据文件数量: find /root/all_m_files -type f | wc -l 2. 数据预处理 仅保留UTF-8 格式文件,且所有保留的代码文件长度必须大于20行 import os import pandas as pddef try_read…...

MySQL 的 super_read_only 和 read_only 参数

MySQL 的 super_read_only 和 read_only 参数 一、参数基本概念 1. read_only 参数 作用:控制普通用户是否只能读取数据影响范围:所有非SUPER权限的用户默认值:OFF(可读写) 2. super_read_only 参数 作用&#xf…...

【C++篇】list模拟实现

实现接口&#xff1a; list的无参构造、n个val构造、拷贝构造 operator重载 实现迭代器 push_back() push_front() erase() insert() 头尾删 #pragma once #include<iostream> #include<assert.h> using namespace std;namespace liu {//定义list节点temp…...

[嵌入式实验]实验二:LED控制

一、实验目的 1.熟悉开发环境 2.控制LED灯 二、实验环境 硬件&#xff1a;STM32开发板、CMSIS-DAP调试工具 软件&#xff1a;ARM的IDE&#xff1a;Keil C51 三、实验内容 1.实验原理 &#xff08;1&#xff09;LED灯原理与点亮 LED即发光二极管&#xff0c;有电流通过…...

Linux 基础开发工具的使用

目录 前言 一&#xff1a;下载工具yum 二&#xff1a;文本编辑器vim 1. 命令模式 2. 插入模式 3. 底行模式 三&#xff1a;gcc和g 基本使用格式 常用选项及作用 编译过程示例 四、Linux 项目自动化构建工具 ——make/Makefile 1. make 与 Makefile 的关系 2. Make…...

能按需拆分 PDF 为多个文档的工具

软件介绍 彩凤 PDF 拆分精灵是一款具备 PDF 拆分功能的软件。 功能特点 PDF 拆分功能较为常见&#xff0c;很多 PDF 软件都具备&#xff0c;例如 DC 软件提取 PDF 较为方便&#xff0c;但它不能从一个 PDF 里提取出多个 PDF。据印象&#xff0c;其他 PDF 软件也似乎没有能从…...

瑞数6代jsvmp简单分析(天津电子税x局)

国际惯例 今天帮朋友看一个gov网站的瑞数加密&#xff08;天津电子税x局&#xff09; 传送门&#xff08;登陆入口界面&#xff09; 瑞数6特征 1.服务器会发两次包&#xff0c;第一次响应状态码为412&#xff0c;第二次响应状态码为200。 2.有三重debugger&#xff0c;其中有…...