机器学习-特征工程
一、特征工程介绍
1.1 什么是特征
数值特征(连续特征)、文本特征(离散特征)
1.2 特征的种类


1.3 特征工程

特征是机器学习可疑直接使用的,模型和特征之间是一个循环过程;
实际上特征工程就是将原始数据处理成机器学习可以直接使用数据的过程;
特征工程,降噪、将特征转化为数字,更好构建数学模型。
二、特征预处理
现实中数据集可能杂乱,如存在异常值、缺失值(非常大或小),这个时候是没法做特征工程的,需要数据预处理后,在做特征工程,这样效果更好!
特征预处理的⽅法
2.1 缺失值处理
⼀般缺失值可以⽤均值、中位数、众数等填充,或者直接将缺失值当做⼀个 特定的值来对待。还可以利⽤⼀些复杂的插值⽅法,如样条插值等来填充缺失值。如果缺 失值不多,还可以将包含缺失值的样本丢弃。
2.2 归⼀化
不同特征之间由于量纲不⼀样,数值可能相差很⼤,直接将这些差别极⼤的特征 灌⼊模型,会导致数值⼩的特征根本不起作⽤,⼀般我们要对数值特征进⾏归⼀化处理, 常⽤的归⼀化⽅法有min-max归⼀化、分位数归⼀化、正态分布归⼀化、⾏归⼀化等。
2.3异常值与数值截断
对于数值型特征,可能会存在异常值,包括异常⼤和异常⼩的值。在统计数据处理中有所谓3σ准则,即对于服从正态分布的随机变量,该变量的数值分布在 (μ-3σ,μ+3σ)中的概率为0.9974,这时可以将超出该范围的值看成异常值,采⽤向上截断 (⽤μ-3σ)和向下截断(⽤μ+3σ)的⽅法来为异常值赋予新的值。对于真实业务场景,可能还要根据特征变量的实际意义来进⾏处理。
2.4⾮线性变换
有时某个属性不同值之间差别较⼤(⽐如年收⼊),有时为了让模型具备更多的⾮线性能⼒(特别是对于线性模型),这两种情况下都需要对特征进⾏⾮线性变换,⽐如值取 对数(值都是正的情况下)作为最终的特征,也可以采⽤多项式、⾼斯变换、logistic变换等转化为⾮线性特征。
三、特征构建
所谓特征构建是从原始数据中提取特征,将原始数据空间映 射到新的特征向量空间,使得在新的特征空间中,模型能够更好地学习 数据中的规律。
离散特征
1.1 one-hot编码(n-hot)
1.2 计数编码
次数来编码,如所有样本中,A歌手出现的次数,A歌手直接转化为次数。
1.3 散列编码(映射到低维向量空间)
1.4 离散特征之间交叉(⽤户地域与视频语⾔)
1.5 离散特征与连续特征交叉(视频语⾔与⽤户年龄)
连续(数值)特征
1) 直接使⽤
2) 离散化(分桶)
3) 特征交叉(⾮线性函数)
时间特征
1) 转化为数值
离基准时间,如离1900年多少年,
2) 将时间离散化(是否⼯作⽇、周⼏和一天的那个时间点)
是否为周日(0或者1)
地理位置特征
1) ⾏政区划表示
1-北京,2-天津.... 其实one-hot编码也是可以的
2) 经纬度表示
二维向量来表示
3) 距离表示
商家离你的距离,一维数字来表示,近的会优先表示
⽂本特征
TF-IDF、LDA、Word2Vec
富媒体特征
领域相关的⽅法
嵌⼊特征
基于内容的嵌⼊、基于⾏为的嵌⼊
相关文章:
机器学习-特征工程
一、特征工程介绍 1.1 什么是特征 数值特征(连续特征)、文本特征(离散特征) 1.2 特征的种类 1.3 特征工程 特征是机器学习可疑直接使用的,模型和特征之间是一个循环过程; 实际上特征工程就是将原始数据…...
大数据技术之集群数据迁移
文章目录 数据治理之集群迁移数据 数据治理之集群迁移数据 准备两套集群,我这使用apache集群和CDH集群。 启动集群 启动完毕后,将apache集群中,hive库里dwd,dws,ads三个库的数据迁移到CDH集群 在apache集群里hosts加上CDH Namenode对应域名并…...
CF1265E Beautiful Mirrors
CF1265E Beautiful Mirrors 洛谷CF1265E Beautiful Mirrors 题目大意 Creatnx \text{Creatnx} Creatnx有 n n n面魔镜,每天她会问一面镜子:“我漂亮吗?”,第 i i i面魔镜有 p i 100 \dfrac{p_i}{100} 100pi的概率告诉 Creat…...
软件测试/测试开发丨利用ChatGPT自动生成架构图
点此获取更多相关资料 简介 架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰…...
Java学习笔记(六)——面向对象编程(基础)
一、类与对象 (一)类与对象的概念 (二)对象内存布局 编辑 对象分配机制 编辑 (三)属性/成员变量 (四)创建对象与访问属性 二、成员方法 (一)方法…...
0基础学习PyFlink——个数滚动窗口(Tumbling Count Windows)
大纲 Tumbling Count WindowsmapreduceWindow Size为2Window Size为3Window Size为4Window Size为5Window Size为6 完整代码参考资料 之前的案例中,我们的Source都是确定内容的数据。而Flink是可以处理流式(Streaming)数据的,就是…...
车载终端构筑智慧工厂:无人配送车的高效物流体系
随着科技的不断进步和应用,智能化已经成为许多领域的关键词。在物流行业中,随着无人配送车的兴起和智慧工厂的崛起,车载终端正引领着无人配送车的科技变革之路。 文章同款:https://www.key-iot.com/iotlist/sv900.html 车载终端…...
插件_日期_lunar-calendar公历农历转换
现在存在某需求,需要将公历、农历日期进行相互转换,在此借助lunar-calendar插件完成。 下载 [1] 通过npm安装 npm install lunar-calendar[2]通过文件方式引入 <script type"text/javascript" src"lib/LunarCalendar.min.js">…...
【FreeRTOS】【STM32】08 FreeRTOS 消息队列
简单来说 消息队列是一种数据结构 任务操作队列的基本描述 1.如果队列未满或者允许覆盖入队,FreeRTOS会将任务需要发送的消息添加到队列尾。 2.如果队列满,任务会阻塞(等待)。 3.用户可以指定等待时间。 4.当其它任务从其等待的队列中读取入了数据(这时候队列未满…...
【计算机组成原理】CPU的工作原理
一.CPU的组成结构 CPU主要有运算器、控制器、寄存器和内部总线等组成,其大概的样子长这样: 看不懂没关系,我们将采用自顶而下的方法来讲解CPU的具体工作原理,我们首先来说一下什么叫寄存器,顾名思义,寄存器…...
部署ELK
一、elasticsearch #拉取镜像 docker pull elasticsearch:7.12.1 #创建ELK docker网络 docker network create elk #启动ELK docker run -d --name es --net elk -P -e "discovery.typesingle-node" elasticsearch:7.12.1 #拷贝配置文件 docker cp es:/usr/share/el…...
纯前端实现图片验证码
前言 之前业务系统中验证码一直是由后端返回base64与一个验证码的字符串来实现的,想了下,前端其实可以直接canvas实现,减轻服务器压力。 实现 子组件,允许自定义图片尺寸(默认尺寸为100 * 40)与验证码刷新时间(默认时间为60秒)…...
#django基本常识01#
1、manage.py 所有子命令的入口,比如: python3 manage.py runserver 启动服务 python3 manage.py startapp 创建应用 python3 manage.py migrate 数据库迁移 直接执行python3 manage.py 可显示所有子命令...
什么是物流RPA?物流RPA解决什么问题?物流RPA实施难点在哪里?
RPA指的是机器人流程自动化,它是一套模拟人类在计算机、平板电脑、移动设备等界面执行任务的软件。通过RPA,可以自动完成重复性、繁琐的工作,提高工作效率和质量,降低人力成本。RPA适用于各种行业和场景,例如财务、人力…...
乐鑫工程部署过程记录
一、获取编译环境 1、下载sdk,ESP-IDF 这里有很多发布版本,当前我选择的是4.4.6,可以选择下载压缩包,也可以git直接clone 2、配置编译环境 我选择的是Linux Ubuntu下部署开发环境 查看入门指南 选择对应的芯片,我…...
to 后接ing形式的情况
look forward to seeing you. (期待着见到你) She admitted to making a mistake. (承认犯了个错误) He is accustomed to working long hours. (习惯于长时间工作)...
我做云原生的那几年
背景介绍 在2020年6月,我加入了一家拥有超过500人的企业。彼时,前端团队人数众多,有二三十名成员。在这样的大团队中,每个人都要寻找自己的独特之处和核心竞争力。否则,你可能会沉没于常规的增删改查工作中࿰…...
@EventListener注解使用说明
在Java的Spring框架中,EventListener注解用于监听和处理应用程序中的各种事件。通过使用EventListener注解,开发人员可以方便地实现事件驱动的编程模型,提高代码的灵活性和可维护性。本文将详细探讨EventListener注解的使用方法和作用&#x…...
算法通关村第五关-白银挑战实现队列
大纲 队列基础队列的基本概念和基本特征实现队列队列的基本操作Java中的队列 队列基础 队列的基本概念和基本特征 队列的特点是节点的排队次序和出队次序按入队时间先后确定,即先入队者先出队,后入队者后出队,即我们常说的FIFO(first in fi…...
协力共创智能未来:乐鑫 ESP RainMaker 云方案线下研讨会圆满落幕
近日,乐鑫 ESP RainMaker 云方案线下研讨会(深圳)在亚马逊云科技与合作伙伴嘉宾的支持下成功举办,吸引了众多来自智能家电、照明电工、能源和宠物等行业的品牌客户、方案商和制造商。研讨会围绕如何基于乐鑫 ESP RainMaker 硬件连…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
