当前位置: 首页 > news >正文

读书笔记——labuladong算法笔记

读书笔记——labuladong算法笔记

  • 序言
  • 计算机算法世界观
  • 计算机算法方法论
    • 二叉树遍历
      • 广度遍历BFS
      • 二叉树的前中后序遍历
      • 回溯算法
      • 动态规划算法
      • 二分搜索算法
    • 其他算法
      • 滑动窗口
      • 双指针
      • Union-Find算法

序言

labuladong算法笔记是一本讲解算法题求解技巧的书。本次读书笔记为2023年8月第1版的相关内容,作者为付来东。本书是配套leetcode进行算法讲解的,语言使用C++和Java。本书对于提高算法结题能力的方法是将常用的算法进行抽象,形成系统,以为读者赋能。这个确实是一个很实用的方法论。以下从世界观到方法论,逐渐深入。

计算机算法世界观

什么是计算机算法,计算机算法到底如何求解问题?有三种方法:1、人通过自己的思辨能力,指导计算机算出值,计算机只作为计算器;2、暴力求解,人设计计算机遍历解求值域的方式以及定义解,让计算机进行遍历求解;3、前两者结合。

计算机算法方法论

二叉树遍历

这里的“二叉树”是泛华的概念,指一切在某种状态下需要进入其子状态进行遍历的模式。

广度遍历BFS

广度遍历一般用于求解到根节点的最短距离,这种算法一般空间复杂度比较大,因为需要保存同一层所有“有效节点”。下面展示一下这个算法的解题模板:

template<typename judge_func>
int BFS(node* start, judge_func& target)
{deque<node*> q;		// 这个队列包含本次要弹出的节点,以及其子节点q.push_back(start);		// 先把起始节点放入unordered_set<node*> visited;	// 已经访问过的节点,二叉树不需要,遍历图时需要 int step = 0;			// 记录最小步数while (!q.empty()){size_t sz = q.size();	// 记录父亲节点的数量// 依次弹出父亲节点,并将其子节点插入到队列末尾for (int i = 0; i < sz; ++i){node* cur = q.front();q.pop_front();// 判断是不是需要的目标if (target(cur)){return step;}// 如上所述,将当前节点子节点加入队列末尾for (auto sub: cur->subnodes()){if (0 == visited.count(sub)){q.push_back(sub);visited.insert(sub);}}// 更新步数++step;}}
}

过程就是先将第一个节点插入,然后循环判断当前数组中元素数量既是当前节点数量,判断当前节点是不是需要的,如果不是就讲其子节点插入,直到队列中不再有数据为止。
优化:BFS有一种双向BFS优化。因为BFS正向遍历会随着遍历次数增加,遍历的节点数量也会增加,但是如果通过从叶子向根进行遍历加上从叶子向根遍历,那么复杂度将大大降低。

二叉树的前中后序遍历

二叉树遍历其实很简单,主要就是对当前节点的处理时机不同。首先访问当前节点的就是前序,中间访问就是中序,访问完子节点之后再访问的就是后续。框架代码如下:

void traverse(TreeNode* root)
{if (root == nullptr){return;	}// 前序位置traverse(root->left);// 中序位置traverse(root->right);// 后序位置
}

回溯算法

这个算法看上去名字很高大上,其实搞某一门学科的人就喜欢把一个简单的说法说的让人觉得“不明觉厉”。所谓回溯算法实际就是“选择->撤销->下一个选择->再撤销…"如此而已。下面给出一个回溯算法的框架伪代码:

result = []
def backtrack(路径, 选择列表):if 满足结束条件:result.add(路径)returnfor 选择 in 选择列表:做选择(设置下一个选择状态)backtrack(路径, 选择列表)撤销选择(恢复当前选择状态)

回溯算法关心的是到达目标状态的路径情况重点)。另外,回溯算法和动态规划算法不一样的一点就是,回溯算法没有重叠子问题,没有办法通过字典来进行优化,就是纯的暴力搜索。

动态规划算法

动态规划是各个厂经常考的题目类型,难住过不少工友,当然也包含我。动态规划一般用于求极值。动态规划问题需要满足最优子问题,就是说一个问题的最优解,可以分解成为其子问题的最优解作为参数以后的最优解。子问题之间不能有相关性。动态规划有自顶而下和自底而上两种解法,由于动态规划会存在子问题,因此可以使用备忘录进行加速。解法伪代码如下:

# 自顶而下
def dp(状态1,状态2,状态3,...)for 选择 in 所有可能选择:# 此时的状态可能由于做出的选择而改变result = 求最值(result, dp(状态1,状态2,...))return result# 自底而上
# 初始化base case
dp[0][0][...]=base case
# 进行状态转移
for 状态1 in 状态1的值域:for 状态2 in 状态2的值域:for ...dp[状态1][状态2][...] = 求最值(选择1,选择2,...)

二分搜索算法

二分搜索一般的时间复杂度是O(log(n)),所以看到要求时间是这种形式的很多都是用的二分搜索算法。二分搜索算法原理非常简单,难点在于其边界条件上。所以在写二分算法的时候要先想清楚是要用闭区间还是开区间,另外要明白“中点”这个概念是一个开区间的边界,因为在每次判断必然会判断这个点,因此如果你要用开区间,那么这个点可以直接使用,否则就需要跳过该点。二分搜索框架如下:

int binarySearch(vector<int> nums, int target)
{int left = 0;int right = nums.size() - 1;	// 闭区间,因为搜索范围肯定是包含最后一个元素的嘛while (left <= right)			// 闭区间两者相等时结束了吗?并没有啊,因为区间中还有一个元素的{int mid = left + (right-left)/2;if (nums[mid] == target){return mid;	}else if (nums[mid] < target) 	// 目标在中点右侧{left = mid + 1;				// mid已经验证过所以要+1}else if (nums[mid] > target)	// 目标在中点左侧{right = mid - 1;}}return -1;
}

二分搜索还可以扩展为在元素可重复的数组中查找左右边界,框架如下:

int left_bound(vector<int>& nums, int target)
{int left = 0;int right = nums.size();		// 右开区间while (left < right)			// 相等时区间内不存在元素,可以跳出{int mid = left + (right-left)/2;if (nums[mid]==target){right = mid;			// 重点。相等时移动右边界}else if (nums[mid]<target){left = mid+1;}else if (nums[mid] > target){right = mid;			// 开区间,如上所述,中点本身是开区间边界}}return left;
}

上面找到的左边界是闭边界。

其他算法

滑动窗口

滑动窗口一般用于遍历一遍就可以解决数据集子集问题。这种问题在乎的是子集的组合对子集的排列没有严格要求。滑动窗口问题框架如下:

void slidingWindow(string s)
{unordered_map<char,int> window;int left = 0, right = 0;while (left < right && right <  s.size()){char c = s[right];window.add(c);right++;// 窗口内数据更新while (left < right && window needs shrink){char d = s[left];window.remove(d);left++;// 窗口数据更新}}
}

双指针

双指针比较灵活,需要注意的就是你可以设计双指针的迭代方式,可以是快慢指针,也可以从起点像两边扩展的指针(对于回文子串有效)。

Union-Find算法

Union-Find算法算是比较奇特的算法了,它用于生成和查找集合中的联合域。生成过程分2步:
1、初始化:每个元素的父节点都是自己;
2、连接:将一个域的父节点的父节点指向另外一个域的父节点;
这样就可以生成一个UF了。代码如下:

class UF
{
private:int count;vector<int> parent;
public:UF(const int& n):count(n),parent(n,0){for (int i = 0; i < n; ++i){parent[i] = i;}}void union(int p, int q){int rootP = find(p);int rootQ = find(q);if (rootP==rootQ)return;parent[rootQ]==rootP;count--;}bool connected(int p, int q){int rootP = find(p);int rootQ = find(q);return rootP==rootQ;}int find(int x){if(parent[x] != x){parent[x] = find(parent[x]);}return parent[x];}int count() const{return count;}
};

相关文章:

读书笔记——labuladong算法笔记

读书笔记——labuladong算法笔记 序言计算机算法世界观计算机算法方法论二叉树遍历广度遍历BFS二叉树的前中后序遍历回溯算法动态规划算法二分搜索算法 其他算法滑动窗口双指针Union-Find算法 序言 labuladong算法笔记是一本讲解算法题求解技巧的书。本次读书笔记为2023年8月第…...

Linux中阶教程:bash shell基础

文章目录 输入输出赋值和计算条件判断函数for 循环数组及其遍历其他控制语句 输入输出 echo表示打印字符串&#xff1b;read表示获取用户输入&#xff1b;$用于引用变量。 # test1.sh bash中用#进行单行注释 echo "input your name:" read user_name echo "h…...

Golang 编译原理

简介 Golang&#xff08;Go语言&#xff09;是一种开源的编程语言&#xff0c;由Google开发并于2009年首次发布。它具备高效、可靠的特性&#xff0c;被广泛应用于云计算、分布式系统、网络服务等领域。Golang的编译原理是理解和掌握这门语言的重要基础之一。本文将介绍Golang…...

基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别 计算机竞赛

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…...

计算机视觉基础——基于yolov5-face算法的车牌检测

文章目录 车牌检测算法检测实现1.环境布置2.数据处理2.1 CCPD数据集介绍2.1.1 ccpd2019及20202.1.2 文件名字解析 2.2数据集处理2.2.1 CCPD数据处理2.2.2 CPRD数据集处理 2.3 检测算法2.3.1 数据配置car_plate.yaml2.3.2 模型配置2.3.3 train.py2.3.4 训练结果 2.4 部署2.4.1 p…...

【好书推荐】AI时代架构师修炼之道:ChatGPT让架构师插上翅膀

目录 前言 ChatGPT对架构师工作的帮助 快速理解和分析需求 提供代码建议和解决方案 辅助系统设计和优化 提高团队协作效率 如何使用ChatGPT提高架构师工作效率 了解用户需求和分析问题 编码实践和问题解决 系统设计和优化建议 团队协作和沟通效率提升 知识管理和文…...

全局代理和局部代理的区别

在计算机领域中&#xff0c;代理是一种常见的网络技术&#xff0c;它可以帮助用户更好地控制网络访问和数据传输。代理可以分为全局代理和局部代理两种&#xff0c;它们有着不同的作用和适用场景。 一、全局代理 全局代理指的是在系统级别设置的代理&#xff0c;它可以代理所…...

基于EPICS stream模块的直流电源的IOC控制程序实例

本实例程序实现了对优利德UDP6720系列直流电源的网络控制和访问&#xff0c;先在此介绍这个项目中使用的硬件&#xff1a; 1、UDP6721直流电源&#xff1a;受控设备 2、moxa串口服务器5150&#xff1a;将UDP6721直流电源设备串口连接转成网络连接 3、香橙派Zero3&#xff1a;运…...

Unity3D ECS架构适合作为主架构还是局部架构

前言 前言 Unity3D是一款广泛应用于游戏开发的跨平台游戏引擎&#xff0c;提供了丰富的功能和工具来简化游戏开发的过程。而Entity-Component-System&#xff08;ECS&#xff09;架构则是一种面向数据的设计模式&#xff0c;它将游戏对象&#xff08;Entity&#xff09;分解为…...

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

从零开始的目标检测和关键点检测&#xff08;三&#xff09;&#xff1a;训练一个Glue的RTMPose模型 一、重写config文件二、开始训练三、ncnn部署 从零开始的目标检测和关键点检测&#xff08;一&#xff09;&#xff1a;用labelme标注数据集 从零开始的目标检测和关键点检测…...

Qt6 中弹出消息框,一段时间后自动退出

以下代码功能&#xff0c;弹出模态消息框&#xff0c;然后&#xff0c;等待 3 秒&#xff0c;消息框自动退出 QMessageBox msgbox;msgbox.setText("sleep 3s");QTimer::singleShot(3000, &msgbox, &QMessageBox::close);msgbox.exec();...

elementUI树节点全选,反选,半选状态

// <template>部分 <div class"check-block"><el-divider></el-divider><el-checkbox :indeterminate"indeterminate" v-model"checkAll" change"handleCheckAllChange">全选</el-checkbox><e…...

Kafka、RabbitMQ、RocketMQ中间件的对比

消息中间件现在有不少&#xff0c;网上很多文章都对其做过对比&#xff0c;在这我对其做进一步总结与整理。 RocketMQ 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件&#xff0c;使用Mysql作为消息存储媒介&#xff0c;可完全水平扩容&#xff0c;为了进一步降低成…...

Mac 创建并使用 .zshrc 文件

1&#xff0c;打开终端输入指令 touch .zshrc 2&#xff0c;你可能希望将 .bash_profile 文件中的内容复制到 .zshrc 文件中&#xff0c;那建议复制过来。 3&#xff0c;使用 .zshrc 文件 执行以下指令&#xff1a; source .zshrc 注&#xff1a;以后希望使用 .bash_prof…...

Unity3D移动开发如何依据性能选择Shader

前言 在Unity3D移动开发中&#xff0c;选择合适的Shader是非常重要的&#xff0c;它直接影响到游戏的性能和画面效果。本文将介绍如何依据性能选择Shader&#xff0c;并给出相应的技术详解以及代码实现。 对惹&#xff0c;这里有一个游戏开发交流小组&#xff0c;希望大家可以…...

基于stm32F4的智能宠物喂食器的设计:LVGL界面、定时喂食喂水通风

宠物喂食器 一、功能设计二、元器件选型三、UI设计四、原理图设计五、源代码设计六、成品展示 实物链接&#xff1a;https://m.tb.cn/h.5iCUX6H?tkPL65WXCEipQ CZ3457 一、功能设计 1、设计一个触摸屏作为人机交互 2、通过触摸屏设置时间定时喂食喂水通风 3、获取当前水槽的…...

jumpserver堡垒机docker方式安装部署

1、环境要求 请先自行创建 数据库 和 Redis, 版本要求参考上面环境要求说明 mysql>5.7 redis >5.0 2、创建数据库 mysql&#xff1a; create database jumpserver default charset utf8; GRANT ALL PRIVILEGES ON jumpserver.* TO jumpserver% IDENTIFIED BY nu4x599…...

在基于亚马逊云科技的湖仓一体架构上构建数据血缘的探索和实践

背景介绍 随着大数据技术的进步&#xff0c;企业和组织越来越依赖数据驱动的决策。数据的质量、来源及其流动性因此显得非常关键。数据血缘分析为我们提供了一种追踪数据从起点到终点的方法&#xff0c;有助于理解数据如何被转换和消费&#xff0c;同时对数据治理和合规性起到关…...

VScode clangd 插件浏览 linux 源码

文章目录 VScode clangd 插件浏览 linux 源码clangd 安装与配置VScode 插件安装clangd 安装方法一方法二 clangd 配置 cmake 生成bear 生成 compile_commands.json触发 clangd linux 内核脚本生成 compile_commands.json 文件三种方式对比 VScode clangd 插件浏览 linux 源码 …...

GZ035 5G组网与运维赛题第8套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项&#xff08;高职组&#xff09; 赛题第8套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通&#xff08;35分&#xff09; 子任务1&#xff1a;5G公共网络部署与调试&#xff08;15分&#xff09; 子…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...