当前位置: 首页 > news >正文

k8s之集群调度

目录

调度

工作机制

调度过程

调度算法

优先级

指定调度节点


调度

Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。

用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里    需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。

在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件。

工作机制

Pod 是 Kubernetes 的基础单元,Pod 启动典型创建过程如下
(1)这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件。

(2)用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本。

(3)APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端。

(4)当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer。

(5)由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager。

(6)Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)。

(7)在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么。

(8)同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer。

(9)由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上。

(10)Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来。

(11)etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果。

(12)kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer。

(13)APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受。

#注意:在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载。

调度过程

Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:
●公平:如何保证每个节点都能被分配资源
●资源高效利用:集群所有资源最大化被使用
●效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
●灵活:允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上。

调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);然后对通过的节点按照优先级排序,这个是优选策略(priorities);最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误。

调度算法

Predicate 有一系列的常见的算法可以使用
●PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源nodeName,检查节点名称是否和 NodeName 匹配。。
●PodFitsHost:如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配。
●PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突。
●PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点。 
●NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程:按照优先级大小对节点排序。

优先级

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。有一系列的常见的优先级选项包括:
●LeastRequestedPriority:通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。
●BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。
●ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。

通过算法对所有的优先级项目和权重进行计算,得出最终的结果。

指定调度节点

●pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配

vim myapp.yaml
apiVersion: apps/v1  
kind: Deployment  
metadata:name: myapp
spec:replicas: 3selector:matchLabels:app: myapptemplate:metadata:labels:app: myappspec:nodeName: node01containers:- name: myappimage: soscscs/myapp:v1ports:- containerPort: 80kubectl apply -f myapp.yaml

kubectl get pods -o wide


 

//查看详细事件(发现未经过 scheduler 调度分配)
kubectl describe pod myapp-699655c7fd-qvvjl

●pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束
//获取标签帮助
kubectl label --help
Usage:
  kubectl label [--overwrite] (-f FILENAME | TYPE NAME) KEY_1=VAL_1 ... KEY_N=VAL_N [--resource-version=version] [options]

需要获取 node 上的 NAME 名称

kubectl get node


给对应的 node 设置标签分别为 kgc=a 和 kgc=b

kubectl label nodes node01 kgc=a
kubectl label nodes node02 kgc=b

查看标签

kubectl get nodes --show-labels

修改成 nodeSelector 调度方式

vim myapp1.yaml
apiVersion: apps/v1
kind: Deployment  
metadata:name: myapp1
spec:replicas: 3selector:matchLabels:app: myapp1template:metadata:labels:app: myapp1spec:nodeSelector:kgc: acontainers:- name: myapp1image: soscscs/myapp:v1ports:- containerPort: 80kubectl apply -f myapp1.yaml 

kubectl get pods -o wide

//查看详细事件(通过事件可以发现要先经过 scheduler 调度分配)
kubectl describe pod myapp1-7c5b7d7488-pq8km

//修改一个 label 的值,需要加上 --overwrite 参数

kubectl label nodes node02 kgc=a --overwrite

//删除一个 label,只需在命令行最后指定 label 的 key 名并与一个减号相连即可:

kubectl label nodes node02 kgc-

//指定标签查询 node 节点

kubectl get node -l kgc=a

相关文章:

k8s之集群调度

目录 调度 工作机制 调度过程 调度算法 优先级 指定调度节点 调度 Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。 用户是通过 kubectl 根据配置文件,向 APIServer 发送命令…...

代码随想录算法训练营第四十二天丨 动态规划part05

1049.最后一块石头的重量II 思路 本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。 感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。 本题物品的重量为 stones[i],物品的价…...

[css] flex 子元素自动撑开父元素宽度

对于水平排列的情况,我们可以设置父元素的flex-direction属性为row。这样,子元素将会水平排列在一行内,并自动撑开父元素的宽度。如果子元素的宽度总和超过了父元素的宽度,则子元素会被压缩,以适应父元素的宽度。 对于…...

全新干货!一招教你迅速提升流量主收入!包你轻松月入过万

也不怕大家笑话,才哥以前收入每天才一块钱,连瓶水都买不了, 可是自从我开始接触老年粉私域后,一个搬运公众号的流量主收益两个月后就可以用“浴火重生”来形容了。 一个搬运公众号一天的流量主收益比我原创两年的个人公众号收益还…...

连接两个dataframe

concat import pandas as pd df1 pd.DataFrame({‘A’: [1, 2, 3], ‘B’: [4, 5, 6]}) df2 pd.DataFrame({‘A’: [7, 8, 9], ‘B’: [10, 11, 12]}) result pd.concat([df1, df2]) # 在行上连接 merge import pandas as pd df1 pd.DataFrame({‘key’: [‘A’, ‘B…...

【入门Flink】- 05Flink运行时架构以及一些核心概念

系统架构 Flink运行时架构Standalone会话模式为例 1)作业管理器(JobManager) JobManager 是一个 Flink 集群中任务管理和调度的核心,是控制应用执行的主进程。每个应用都应该被唯一的 JobManager 所控制执行。 JobManger 又包含…...

网络协议的基本概念

网络协议的基本概念 随处可见的协议 在计算机网络与信息通信领域里,人们经常提及“协议”一词。互联网中常用的具有代表性的协议有IP、TCP、HTTP等。 “计算机网络体系结构”将这些网络协议进行了系统归纳。TCP/IP就是IP、TCP、HTTP等协议的集合。现在&#xff0…...

广汽传祺E9上市,3DCAT实时云渲染助力线上3D高清看车体验

今年5月21日,中国智电新能源旗舰MPV——广汽传祺智电新能源E9在北京人民大会堂举办上市发布会。 发布会现场(图源官方) 为了让更多的消费者能够在线上感受到广汽传祺E9的魅力,3DCAT实时渲染云与大圣科技合作为广汽传祺打造了一款…...

resource manager attributes structure(iofunc_attr_t) 扩展实例

文章目录 前言一、attributes structure(iofunc_attr_t)是什么二、iofunc_attr_t 扩展实例1. iofunc_attr_t 未扩展前的使用实例2. iofunc_attr_t 扩展后的使用实例总结参考资料前言 本文主要介绍如何扩展 QNX resource manager 的 attributes structure(iofunc_attr_t) 属性数…...

劳易测扫码条码分段读取实现方法

添加如下3个功能块:M10,M13和M27 设置BCL参数:Code type 1 为Code128 参数:Mode为Range 参数:Number Of digits 1 为条码最小长度 Number Of digits 2 为条码最大长度。 设置M10:Mode(With …...

【Linux】Nignx及负载均衡动静分离

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《微信小程序开发实战》。🎯&#x1f3a…...

AI:50-基于深度学习的柑橘类水果分类

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…...

mysql 中!= 到底走不走索引?

mysql 中! 到底走不走索引? 很多人疑惑! 到底走不走索引, 这里可以肯定的说该操作是可以走索引的,但实际情况中都为啥都不走索引呢? 首先我们要知道走索引与数据量和数据趋势(cardinality)有很大的关系&…...

4 sql语法基础

1、DISTINCT 相同值只会出现一次。它作用于所有列,也就是说所有列的值都相同才算相同。 2、LIMIT 限制返回的行数。可以有两个参数,第一个参数为起始行,从 0 开始;第二个参数为返回的总行数。 返回前 5 行: SELECT * FROM myt…...

网络工程师应知应会:基础知识(5)

一、防火墙区域结构 防火墙按安全级别不同,可划分为内网、外网和 DMZ 区。 (1) 内网。 内网是防火墙的重点保护区域,包含单位网络内部的所有网络设备和主机。该区域是可信的,内网发出的连接较少进行过滤和审计。 (2) 外网。 外网是防火墙重…...

Minio多节点多驱动分布式部署官网文档翻译

原文链接: Deploy MinIO: Multi-Node Multi-Drive — MinIO Object Storage for Linux The procedures on this page cover deploying MinIO in a Multi-Node Multi-Drive (MNMD) or “Distributed” configuration. MNMD deployments provide enterprise-grade p…...

python连接clickhouse (CK)

Author: tkhywang 2810248865qq.com Date: 2023-11-01 11:28:58 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-11-01 11:36:25 FilePath: \PythonProject02\Python读取clickhouse2 数据库数据.py Description: 这是默认设置,请设置customMade, 打开koroFileHead…...

【C++】内联函数一看就懂?

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...

非洲“支付宝”PalmPay搭载OceanBase:成本降低80%

10 月 30 日,非洲支付公司PalmPay 的核心系统搭载国产自研数据库OceanBase,正式投入使用。PalmPay 也是 OceanBase 首个非洲商业用户。 作为一家非洲领先的金融科技公司,PalmPay 于 2019 年在尼日利亚推出电子钱包应用,其功能类似…...

EASYX图片操作

easyx学习网址 建议使用谷歌搜索引擎搜索相关的资料 eg1:图片显示到桌面 #include <stdio.h> #include <easyx.h> #include <iostream> #include <math.h> #include <stdlib.h> #include <conio.h> #include <time.h> #define PI 3…...

多测师肖sir_高级金牌讲师__adb命令

adb指令整理&#xff1a; ADB常用的指令&#xff1a; 查看当前连接设备 &#xff1a; adb devices 进入到shell &#xff1a; adb shell 查看日志 &#xff1a; adb logcat 安装apk文件 &#xff1a; adb install xxx.apk 卸载APP &#xff1a; adb uninstall 包名 查看包名 &…...

块级作用域的理解

块级作用于的概念 由一对花括号{}中的语句集都属于一个块&#xff0c;在这个{}里面包含的块内定义的所有变量在代码块外都是不可见的&#xff0c;因此称为块级作用域。 作用域永远都是任何一门语言的重中之中&#xff0c;因为它控制着变量和参数的可见性和生命周期。讲到这里&…...

【GitLab、GitLab Runner、Docker】GitLab CI/CD 应用

安装Gitlab开源版 官方文档-安装Gitlab 使用Docker安装 sudo docker run --detach \--hostname gitlab.example.com \--env GITLAB_OMNIBUS_CONFIG"external_url http://${ip}:9999/; gitlab_rails[gitlab_shell_ssh_port] 8822;" \--publish 443:443 --publish 99…...

Linux文本编辑器vim使用和配置详解

vim介绍 ​ vim是Linux的一款文本编辑器&#xff0c;可以用来编辑代码&#xff0c;而且支持语法高亮&#xff0c;还可以进行一系列配置使vim更多样化。也可以运行于windows&#xff0c;mac os上。 ​ vim有多种模式&#xff0c;但目前我们只介绍绝大多数场景用的到的模式&…...

港科夜闻|香港科大戴希教授被选为腾讯公司新基石研究员

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大戴希教授被选为腾讯公司“新基石研究员”。10月30日&#xff0c;作为目前国内社会力量资助基础研究力度最大的公益项目之一&#xff0c;“新基石研究员项目”揭晓了第二期获资助名单&#xff0c;来自13个城市28家…...

如何读懂深度学习python项目,以`Multi-label learning from single positive label`为例

Paper : Multi-label learning from single positive label Code 先读一读README.md 可能有意想不到的收获&#xff1b; 实验环境设置要仔细看哦&#xff01; 读论文 如何读论文&#xff0c;Readpaper经典十问 &#xff08;可能在我博客里有写&#xff09; How to read a …...

【面试】Kafka基础知识

定义 Kafka是一个分布式基于发布/订阅模式的消息队列 优点 解耦&#xff1a;上下游之间依赖解耦。缓冲/削峰&#xff1a;生产消息的速度和消费消息的速度不一致时&#xff0c;可以起到缓冲作用。异步&#xff1a;天然的异步处理机制&#xff0c;生产者把消息(任务)放进队列&…...

【入门Flink】- 06Flink作业提交流程【待完善】

Standalone 会话模式作业提交流程 代码生成任务的过程&#xff1a; 逻辑流图&#xff08;StreamGraph&#xff09;→ 作业图&#xff08;JobGraph&#xff09;→ 执行图&#xff08;ExecutionGraph&#xff09;→物理图&#xff08;Physical Graph&#xff09;。 作业图算子链…...

Linux 上的轻量级浏览器

导读大多数 Linux 桌面环境中包含的基本图像查看器可能不足以满足你的需要。如果你想要一些更多的功能&#xff0c;但仍然希望它是轻量级的&#xff0c;那么看看这四个 Linux 桌面中的图像查看器&#xff0c;如果还不能满足你的需要&#xff0c;还有额外的选择。 当你需要的不…...

肆[4],滤波

1&#xff0c;简介 1.1&#xff0c;Opencv提供滤波处理函数 方框滤波&#xff0c;BoxBlur函数 均值滤波(领域平均滤波)&#xff0c;Blur函数 高斯滤波&#xff0c;GaussianBlur函数 中值滤波&#xff0c;medianBlur函数 双边滤波&#xff0c;bilateralFilter函数 1.2&…...