当前位置: 首页 > news >正文

代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II

目录

一、(leetcode 62)不同路径

1.动态规划

1)确定dp数组(dp table)以及下标的含义

2)确定递推公式

3)dp数组的初始化

4)确定遍历顺序

5)举例推导dp数组

 2.数论方法

二、(leetcode 63)不同路径 II


一、(leetcode 62)不同路径

力扣题目链接

1.动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1)确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2)确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3)dp数组的初始化

首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

4)确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5)举例推导dp数组

如图所示:

62.不同路径1

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m; i++) dp[i][0] = 1;for (int j = 0; j < n; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<int> dp(n);for (int i = 0; i < n; i++) dp[i] = 1;for (int j = 1; j < m; j++) {for (int i = 1; i < n; i++) {dp[i] += dp[i - 1];}}return dp[n - 1];}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

 2.数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

例如如下代码是不行的。

class Solution {
public:int uniquePaths(int m, int n) {int numerator = 1, denominator = 1;int count = m - 1;int t = m + n - 2;while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母return numerator / denominator;}
};

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 分子int denominator = m - 1; // 分母int count = m - 1;int t = m + n - 2;while (count--) {numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {numerator /= denominator;denominator--;}}return numerator;}
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

二、(leetcode 63)不同路径 II

力扣题目链接

有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了

动规五部曲:

1)确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2)确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

3)dp数组如何初始化

在62.不同路径 (opens new window)不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

4)确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}
}

5)举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0return 0;vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(n × m)

同样给出空间优化版本:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {if (obstacleGrid[0][0] == 1)return 0;vector<int> dp(obstacleGrid[0].size());for (int j = 0; j < dp.size(); ++j)if (obstacleGrid[0][j] == 1)dp[j] = 0;else if (j == 0)dp[j] = 1;elsedp[j] = dp[j-1];for (int i = 1; i < obstacleGrid.size(); ++i)for (int j = 0; j < dp.size(); ++j){if (obstacleGrid[i][j] == 1)dp[j] = 0;else if (j != 0)dp[j] = dp[j] + dp[j-1];}return dp.back();}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(m)

相关文章:

代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II

目录 一、&#xff08;leetcode 62&#xff09;不同路径 1.动态规划 1&#xff09;确定dp数组&#xff08;dp table&#xff09;以及下标的含义 2&#xff09;确定递推公式 3&#xff09;dp数组的初始化 4&#xff09;确定遍历顺序 5&#xff09;举例推导dp数组 2.数论方…...

白帽黑客入门,“每天一个黑客技巧”实现黑客的自我突破 !(附工具包!)

年底了&#xff0c;不少朋友都是在总结一年的学习成果。最后发现完成情况与自己最初定下的目标相去甚远。 同时也针对粉丝和网上大部分存在的问题进行了整理&#xff1a; “为什么我感觉学安全好难&#xff1f;” “渗透测试到底该怎么学&#xff1f;” “为什么总是挖不到漏…...

Jmeter参数化 —— 循环断言多方法

1、参数化接口测试数据 注意&#xff1a;csv文档参数化&#xff0c;里面有多少条数据&#xff0c;就要在线程组里循环多少次&#xff0c;不然就只执行一次 2、添加配置元件-计数器 关于计数器 ①Starting Value&#xff1a;给定计数器的初始值; ②递增&#xff1a;每次循环迭代…...

Autosar诊断实战系列26-Dem(DTCEvent)要点及配置开发详解

本文框架 前言1. Dem及其与其他模块交互介绍1.1 与DCM模块交互1.1.1 0x14服务调用时序1.1.2 0x85服务调用时序1.1.3 0x19服务调用时序1.2 与Fim模块交互1.3 与NvM模块交互1.4 与BswM模块交互1.5 与其他BSW及APP模块交互2. Dem配置开发介绍2.1 DemGeneral配置2.1.1 DemGeneral一…...

STL(第五课):queue

STL&#xff08;标准模板库&#xff09;是一种C标准库&#xff0c;在其中包含了许多常用的数据结构和算法。其中&#xff0c;queue就是STL库中的一个数据结构&#xff0c;用于实现队列&#xff08;先进先出FIFO&#xff09;。 使用STL queue&#xff0c;需要引入头文件<queu…...

点大商城V2版 2.5.2.1 全开源独立版 多小程序端+unipp安装教程

点大商城V2是一款采用全新界面设计支持多端覆盖的小程序应用&#xff0c;支持H5、微信公众号、微信小程序、头条小程序、支付宝小程序、百度小程序&#xff0c;本程序是点大商城V2独立版&#xff0c;包含全部插件&#xff0c;代码全开源&#xff0c;并且有VUE全端代码。分销&am…...

Redo Log(重做日志)的刷盘策略

1. 概述 Redo Log&#xff08;重做日志&#xff09;是 InnoDB 存储引擎中的一种关键组件&#xff0c;用于保障数据库事务的持久性和崩溃恢复。InnoDB 将事务所做的更改先记录到重做日志&#xff0c;之后再将其应用到磁盘上的数据页。 刷盘策略&#xff08;Flush Policy&#x…...

QT窗体之间值的传递,多种方法实现

目录 1. 信号和槽机制 2. 全局变量或单例模式 3. 事件过滤器 4. Qt属性系统 5. 使用QSettings类 在Qt中&#xff0c;有多种方法可以在窗体之间传递值。下面是一些常用的方法&#xff1a; 1. 信号和槽机制 使用Qt的信号和槽机制是一种常见的方式来在窗体之间传递值。您可以…...

政务服务技能竞赛中用到的软件和硬件

政务服务技能竞赛包括争上游、抢先机、秀风采、比擂台几个环节&#xff0c;用到选手端平板、评委端平板、主持人平板、抢答器等设备、抢答器等。分别计算团队分和个人分。答题规则和计分方案均较为复杂&#xff0c;一般竞赛软件无法实现&#xff0c;要用到高端竞赛软件&#xf…...

tcp/ip该来的还是得来

1. TCP/IP、Http、Socket的区别 \qquad 区别是&#xff1a;TCP/IP即传输控制/网络协议&#xff0c;也叫作网络通讯协议&#xff0c;它是在网络的使用中的最基本的通信协议。Http是一个简单的请求-响应协议&#xff0c;它通常运行在TCP之上。Socket是对网络中不同主机上的应用进…...

OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习&#xff1a; • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片&#xff0c;有时候…...

前端难学还是后端难学?系统安全,web安全,网络安全是什么区别?

系统安全&#xff0c;web安全&#xff0c;网络安全是什么区别&#xff1f;三无纬度安全问题 系统安全&#xff0c;可以说是电脑软件的安全问题&#xff0c;比如windows经常提示修复漏洞&#xff0c;是一个安全问题 网页安全&#xff0c;网站安全&#xff0c;比如&#xff0c;…...

diffusers-Load pipelines,models,and schedulers

https://huggingface.co/docs/diffusers/using-diffusers/loadinghttps://huggingface.co/docs/diffusers/using-diffusers/loading 有一种简便的方法用于推理是至关重要的。扩散系统通常由多个组件组成&#xff0c;如parameterized model、tokenizers和schedulers&#xff0c…...

私域营销必备:轻松掌握微信CRM管理方法

大家在微信私域营销中都遇到了什么问题&#xff1f; 比如管理时间不够&#xff0c;群发实效性低&#xff0c;自动回复无法适应变化等等。 我们可以利用微信CRM这个工具&#xff0c;轻松解决这些问题。 请问你们最想用这个工具解决什么问题呢&#xff1f; 使用微信CRM不仅可…...

最长回文子串-LeetCode5 动态规划

由于基础还不是很牢固 一时间只能想到暴力的解法: 取遍每个子串 总数量nn-1n-2…1 O(n^2) 判断每个子串是否属于回文串 O(n) 故总时间复杂度为O(n^3) class Solution { public:string longestPalindrome(string s) { int max0;string ret;for(int i0;i<s.size();i)for(int…...

mysql简单备份和恢复

版本&#xff1a;mysql8.0 官方文档 &#xff1a;MySQL :: MySQL 8.0 Reference Manual :: 7 Backup and Recovery 1.物理备份恢复 物理备份是以数据文件形式备份。这种方式效率高点&#xff0c;适合大型数据库备份。物理备份可冷备可热备。 使用mysqlbackup 命令进行物理备…...

JMeter介绍

1. JMeter是什么&#xff1f; 是Apache组织开发基于Java的接口测试工具&#xff0c;性能测试工具 2.JMeter的优缺点 优点&#xff1a; 开源&#xff0c;免费 跨平台 支持多协议 轻量级别 缺点&#xff1a; 不支持IP欺骗 不可验证页面UI 3.JMeter可以用来做什么&#xff1f; …...

flink job同时使用BroadcastProcessFunction和KeyedBroadcastProcessFunction例子

背景&#xff1a; 广播状态可以用于规则表或者配置表的实时更新&#xff0c;本文就是用一个欺诈检测的flink作业作为例子看一下BroadcastProcessFunction和KeyedBroadcastProcessFunction的使用 BroadcastProcessFunction和KeyedBroadcastProcessFunction的使用 1.首先看主流…...

数据中心系统解决方案

设计思路 系统设计过程中充分考虑各个子系统的信息共享要求&#xff0c;对各子系统进行结构化和标准化设计&#xff0c;通过系统间的各种联动方式将其整合成一个有机的整体&#xff0c;使之成为一套整体的、全方位的数据中心大楼综合管理系统&#xff0c;达到人防、物防和技防…...

服务器开设新账户,创建账号并设置密码

实验室又进新同学了&#xff0c;服务器开设新账号搞起来 1、创建用户&#xff1a; 在root权限下&#xff0c;输入命令useradd -m 用户名&#xff0c;如下 sudo useradd -m yonghuming 2、设置密码&#xff1a; 输入命令passwd 用户名 回车&#xff0c;接着输入密码操作&…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...