当前位置: 首页 > news >正文

代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II

目录

一、(leetcode 62)不同路径

1.动态规划

1)确定dp数组(dp table)以及下标的含义

2)确定递推公式

3)dp数组的初始化

4)确定遍历顺序

5)举例推导dp数组

 2.数论方法

二、(leetcode 63)不同路径 II


一、(leetcode 62)不同路径

力扣题目链接

1.动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1)确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2)确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3)dp数组的初始化

首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

4)确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5)举例推导dp数组

如图所示:

62.不同路径1

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m; i++) dp[i][0] = 1;for (int j = 0; j < n; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<int> dp(n);for (int i = 0; i < n; i++) dp[i] = 1;for (int j = 1; j < m; j++) {for (int i = 1; i < n; i++) {dp[i] += dp[i - 1];}}return dp[n - 1];}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

 2.数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

例如如下代码是不行的。

class Solution {
public:int uniquePaths(int m, int n) {int numerator = 1, denominator = 1;int count = m - 1;int t = m + n - 2;while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母return numerator / denominator;}
};

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 分子int denominator = m - 1; // 分母int count = m - 1;int t = m + n - 2;while (count--) {numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {numerator /= denominator;denominator--;}}return numerator;}
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

二、(leetcode 63)不同路径 II

力扣题目链接

有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了

动规五部曲:

1)确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2)确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

3)dp数组如何初始化

在62.不同路径 (opens new window)不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

4)确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}
}

5)举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0return 0;vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(n × m)

同样给出空间优化版本:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {if (obstacleGrid[0][0] == 1)return 0;vector<int> dp(obstacleGrid[0].size());for (int j = 0; j < dp.size(); ++j)if (obstacleGrid[0][j] == 1)dp[j] = 0;else if (j == 0)dp[j] = 1;elsedp[j] = dp[j-1];for (int i = 1; i < obstacleGrid.size(); ++i)for (int j = 0; j < dp.size(); ++j){if (obstacleGrid[i][j] == 1)dp[j] = 0;else if (j != 0)dp[j] = dp[j] + dp[j-1];}return dp.back();}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(m)

相关文章:

代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II

目录 一、&#xff08;leetcode 62&#xff09;不同路径 1.动态规划 1&#xff09;确定dp数组&#xff08;dp table&#xff09;以及下标的含义 2&#xff09;确定递推公式 3&#xff09;dp数组的初始化 4&#xff09;确定遍历顺序 5&#xff09;举例推导dp数组 2.数论方…...

白帽黑客入门,“每天一个黑客技巧”实现黑客的自我突破 !(附工具包!)

年底了&#xff0c;不少朋友都是在总结一年的学习成果。最后发现完成情况与自己最初定下的目标相去甚远。 同时也针对粉丝和网上大部分存在的问题进行了整理&#xff1a; “为什么我感觉学安全好难&#xff1f;” “渗透测试到底该怎么学&#xff1f;” “为什么总是挖不到漏…...

Jmeter参数化 —— 循环断言多方法

1、参数化接口测试数据 注意&#xff1a;csv文档参数化&#xff0c;里面有多少条数据&#xff0c;就要在线程组里循环多少次&#xff0c;不然就只执行一次 2、添加配置元件-计数器 关于计数器 ①Starting Value&#xff1a;给定计数器的初始值; ②递增&#xff1a;每次循环迭代…...

Autosar诊断实战系列26-Dem(DTCEvent)要点及配置开发详解

本文框架 前言1. Dem及其与其他模块交互介绍1.1 与DCM模块交互1.1.1 0x14服务调用时序1.1.2 0x85服务调用时序1.1.3 0x19服务调用时序1.2 与Fim模块交互1.3 与NvM模块交互1.4 与BswM模块交互1.5 与其他BSW及APP模块交互2. Dem配置开发介绍2.1 DemGeneral配置2.1.1 DemGeneral一…...

STL(第五课):queue

STL&#xff08;标准模板库&#xff09;是一种C标准库&#xff0c;在其中包含了许多常用的数据结构和算法。其中&#xff0c;queue就是STL库中的一个数据结构&#xff0c;用于实现队列&#xff08;先进先出FIFO&#xff09;。 使用STL queue&#xff0c;需要引入头文件<queu…...

点大商城V2版 2.5.2.1 全开源独立版 多小程序端+unipp安装教程

点大商城V2是一款采用全新界面设计支持多端覆盖的小程序应用&#xff0c;支持H5、微信公众号、微信小程序、头条小程序、支付宝小程序、百度小程序&#xff0c;本程序是点大商城V2独立版&#xff0c;包含全部插件&#xff0c;代码全开源&#xff0c;并且有VUE全端代码。分销&am…...

Redo Log(重做日志)的刷盘策略

1. 概述 Redo Log&#xff08;重做日志&#xff09;是 InnoDB 存储引擎中的一种关键组件&#xff0c;用于保障数据库事务的持久性和崩溃恢复。InnoDB 将事务所做的更改先记录到重做日志&#xff0c;之后再将其应用到磁盘上的数据页。 刷盘策略&#xff08;Flush Policy&#x…...

QT窗体之间值的传递,多种方法实现

目录 1. 信号和槽机制 2. 全局变量或单例模式 3. 事件过滤器 4. Qt属性系统 5. 使用QSettings类 在Qt中&#xff0c;有多种方法可以在窗体之间传递值。下面是一些常用的方法&#xff1a; 1. 信号和槽机制 使用Qt的信号和槽机制是一种常见的方式来在窗体之间传递值。您可以…...

政务服务技能竞赛中用到的软件和硬件

政务服务技能竞赛包括争上游、抢先机、秀风采、比擂台几个环节&#xff0c;用到选手端平板、评委端平板、主持人平板、抢答器等设备、抢答器等。分别计算团队分和个人分。答题规则和计分方案均较为复杂&#xff0c;一般竞赛软件无法实现&#xff0c;要用到高端竞赛软件&#xf…...

tcp/ip该来的还是得来

1. TCP/IP、Http、Socket的区别 \qquad 区别是&#xff1a;TCP/IP即传输控制/网络协议&#xff0c;也叫作网络通讯协议&#xff0c;它是在网络的使用中的最基本的通信协议。Http是一个简单的请求-响应协议&#xff0c;它通常运行在TCP之上。Socket是对网络中不同主机上的应用进…...

OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习&#xff1a; • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片&#xff0c;有时候…...

前端难学还是后端难学?系统安全,web安全,网络安全是什么区别?

系统安全&#xff0c;web安全&#xff0c;网络安全是什么区别&#xff1f;三无纬度安全问题 系统安全&#xff0c;可以说是电脑软件的安全问题&#xff0c;比如windows经常提示修复漏洞&#xff0c;是一个安全问题 网页安全&#xff0c;网站安全&#xff0c;比如&#xff0c;…...

diffusers-Load pipelines,models,and schedulers

https://huggingface.co/docs/diffusers/using-diffusers/loadinghttps://huggingface.co/docs/diffusers/using-diffusers/loading 有一种简便的方法用于推理是至关重要的。扩散系统通常由多个组件组成&#xff0c;如parameterized model、tokenizers和schedulers&#xff0c…...

私域营销必备:轻松掌握微信CRM管理方法

大家在微信私域营销中都遇到了什么问题&#xff1f; 比如管理时间不够&#xff0c;群发实效性低&#xff0c;自动回复无法适应变化等等。 我们可以利用微信CRM这个工具&#xff0c;轻松解决这些问题。 请问你们最想用这个工具解决什么问题呢&#xff1f; 使用微信CRM不仅可…...

最长回文子串-LeetCode5 动态规划

由于基础还不是很牢固 一时间只能想到暴力的解法: 取遍每个子串 总数量nn-1n-2…1 O(n^2) 判断每个子串是否属于回文串 O(n) 故总时间复杂度为O(n^3) class Solution { public:string longestPalindrome(string s) { int max0;string ret;for(int i0;i<s.size();i)for(int…...

mysql简单备份和恢复

版本&#xff1a;mysql8.0 官方文档 &#xff1a;MySQL :: MySQL 8.0 Reference Manual :: 7 Backup and Recovery 1.物理备份恢复 物理备份是以数据文件形式备份。这种方式效率高点&#xff0c;适合大型数据库备份。物理备份可冷备可热备。 使用mysqlbackup 命令进行物理备…...

JMeter介绍

1. JMeter是什么&#xff1f; 是Apache组织开发基于Java的接口测试工具&#xff0c;性能测试工具 2.JMeter的优缺点 优点&#xff1a; 开源&#xff0c;免费 跨平台 支持多协议 轻量级别 缺点&#xff1a; 不支持IP欺骗 不可验证页面UI 3.JMeter可以用来做什么&#xff1f; …...

flink job同时使用BroadcastProcessFunction和KeyedBroadcastProcessFunction例子

背景&#xff1a; 广播状态可以用于规则表或者配置表的实时更新&#xff0c;本文就是用一个欺诈检测的flink作业作为例子看一下BroadcastProcessFunction和KeyedBroadcastProcessFunction的使用 BroadcastProcessFunction和KeyedBroadcastProcessFunction的使用 1.首先看主流…...

数据中心系统解决方案

设计思路 系统设计过程中充分考虑各个子系统的信息共享要求&#xff0c;对各子系统进行结构化和标准化设计&#xff0c;通过系统间的各种联动方式将其整合成一个有机的整体&#xff0c;使之成为一套整体的、全方位的数据中心大楼综合管理系统&#xff0c;达到人防、物防和技防…...

服务器开设新账户,创建账号并设置密码

实验室又进新同学了&#xff0c;服务器开设新账号搞起来 1、创建用户&#xff1a; 在root权限下&#xff0c;输入命令useradd -m 用户名&#xff0c;如下 sudo useradd -m yonghuming 2、设置密码&#xff1a; 输入命令passwd 用户名 回车&#xff0c;接着输入密码操作&…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...