stable diffusion公司发布4款LLM大语言模型,为何大家都喜爱LLM?
stable diffusion模型是Stability AI开源的一个text-to-image的扩散模型,其模型在速度与质量上面有了质的突破,玩家们可以在自己消费级GPU上面来运行此模型,本模型基于CompVis 和 Runway 团队的Latent Diffusion Models。本期我们不介绍stable diffusion模型,而是介绍一下Stability AI开源的4款LLM大语言模型。

也许是ChatGPT的大火,带动了LLM大语言模型的节奏,让各个大厂都开始搭建自己的LLM大语言模型,而作为一个AI绘画起家的Stability AI也开源了自己的四款LLM大语言模型。
Stable Beluga
Stability AI 及其 CarperAI 实验室发布了 Stable Beluga 1 及其后继产品 Stable Beluga 2。这是两个强大的新型开放式大型语言模型 (LLM)。 两种模型在不同的基准测试中都表现出了卓越的推理能力。
- Stable Beluga 1 利用原始的 LLaMA 65B 基础模型,并使用标准 Alpaca 格式的数据集进行了微调。
- Stable Beluga 2 利用 LLaMA 2 70B 基础模型,并进行相关数据集上的微调。

与其他大模型相比,其Stable Beluga模型取得的不错的效果。且我们可以直接使用transformers模型库来实现Stable Beluga大语言模型。

首先需要安装transformers库,直接使用pip 进行安装即可。当然其python环境与torch相关的第三方库需要提前配置完成。
pip install transformers
安装完成后,就可以直接使用模型来进行AI对话。
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga2", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga2", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
print(tokenizer.decode(output[0], skip_special_tokens=True))
代码运行后,会自动下载相关的预训练模型。
Stable LM
Stability AI 发布的开源语言模型 Stable LM,其 Alpha 版本有 30 亿和 70 亿个参数2种规格的模型,后续还有 150 亿到 650 亿个参数模型。 所有人在遵守 CC BY-SA-4.0 许可的条件下,可以出于商业或研究目的来使用或者调整 Stable LM 基础模型。

Stable LM 在 The Pile 上构建的新实验数据集上进行训练,该数据集包含 1.5 万亿个标记内容。 尽管该数据集的丰富性使 Stable LM 在会话和编程任务上具有令人惊讶的表现,但是其参数规模较小(只有 3 到 70 亿个参数,相比之下,GPT-3 有 1750 亿个参数)。
同样,Stable LM可以使用transformers库来实现。
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-base-alpha-7b-v2")
model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-base-alpha-7b-v2",trust_remote_code=True,torch_dtype="auto",)
model.cuda()
inputs = tokenizer("what is you name", return_tensors="pt").to("cuda")
tokens = model.generate(**inputs,max_new_tokens=64,temperature=0.75,top_p=0.95,do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))

Stable Code
顾名思义,stable code是为特定人群提供的code编码LLM大模型,类似Meta开源的code LIama,通过使用三种不同尺寸的模型来帮助编程开发人员进行编码工作,从而提高工作效率。

基本模型首先使用BigCode 的堆栈数据集 (v1.2) ,并在多种编程语言进行训练,然后使用 Python、Go、Java、Javascript、C、markdown 和 C++ 等编程语言进行进一步训练。
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablecode-completion-alpha-3b-4k")
model = AutoModelForCausalLM.from_pretrained("stabilityai/stablecode-completion-alpha-3b-4k",trust_remote_code=True,torch_dtype="auto",)
model.cuda()
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to("cuda")
tokens = model.generate(**inputs,max_new_tokens=48,temperature=0.2,do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))

https://huggingface.co/stabilityai #参考链接
stable diffusion 相关阅读
Stable Diffusion加chilloutmixni真人图片生成模型
代码实现stable-diffusion模型
stable diffusion AI精准绘图——ControlNet控件的安装与使用
动画详解transformer

更多transformer,VIT,swin tranformer
参考头条号:人工智能研究所
v号:启示AI科技
微信中复制如下链接,打开,免费体验chatgpthttps://wx2.expostar.cn/qz/pages/manor/index?id=1137&share_from_id=79482&sid=24
相关文章:
stable diffusion公司发布4款LLM大语言模型,为何大家都喜爱LLM?
stable diffusion模型是Stability AI开源的一个text-to-image的扩散模型,其模型在速度与质量上面有了质的突破,玩家们可以在自己消费级GPU上面来运行此模型,本模型基于CompVis 和 Runway 团队的Latent Diffusion Models。本期我们不介绍stabl…...
堆排序--C++实现
1. 简介 堆排序利用的是堆序性,最小堆进行从大到小的排序。 先建初堆,保证堆序性。将堆顶元素与最后一个元素交换, 就将当前堆中的最大(小)的元素放到了最后后。堆大小递减,再重新调整堆选出第二大,重复上述过程。 2…...
【数据结构】数组和字符串(十四):字符串匹配1:朴素的模式匹配算法(StringMatching)
文章目录 4.3 字符串4.3.1 字符串的定义与存储4.3.2 字符串的基本操作4.3.3 模式匹配算法1. 算法原理2. ADL语言3. 伪代码4. C语言实现5 时间复杂度 4.3 字符串 字符串(String)是由零个或多个字符(char)顺序排列组成的有限序列,简称为串。例如 “good morning”就是…...
VMWare虚拟机问题
镜像下载 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区...
代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II
目录 一、(leetcode 62)不同路径 1.动态规划 1)确定dp数组(dp table)以及下标的含义 2)确定递推公式 3)dp数组的初始化 4)确定遍历顺序 5)举例推导dp数组 2.数论方…...
白帽黑客入门,“每天一个黑客技巧”实现黑客的自我突破 !(附工具包!)
年底了,不少朋友都是在总结一年的学习成果。最后发现完成情况与自己最初定下的目标相去甚远。 同时也针对粉丝和网上大部分存在的问题进行了整理: “为什么我感觉学安全好难?” “渗透测试到底该怎么学?” “为什么总是挖不到漏…...
Jmeter参数化 —— 循环断言多方法
1、参数化接口测试数据 注意:csv文档参数化,里面有多少条数据,就要在线程组里循环多少次,不然就只执行一次 2、添加配置元件-计数器 关于计数器 ①Starting Value:给定计数器的初始值; ②递增:每次循环迭代…...
Autosar诊断实战系列26-Dem(DTCEvent)要点及配置开发详解
本文框架 前言1. Dem及其与其他模块交互介绍1.1 与DCM模块交互1.1.1 0x14服务调用时序1.1.2 0x85服务调用时序1.1.3 0x19服务调用时序1.2 与Fim模块交互1.3 与NvM模块交互1.4 与BswM模块交互1.5 与其他BSW及APP模块交互2. Dem配置开发介绍2.1 DemGeneral配置2.1.1 DemGeneral一…...
STL(第五课):queue
STL(标准模板库)是一种C标准库,在其中包含了许多常用的数据结构和算法。其中,queue就是STL库中的一个数据结构,用于实现队列(先进先出FIFO)。 使用STL queue,需要引入头文件<queu…...
点大商城V2版 2.5.2.1 全开源独立版 多小程序端+unipp安装教程
点大商城V2是一款采用全新界面设计支持多端覆盖的小程序应用,支持H5、微信公众号、微信小程序、头条小程序、支付宝小程序、百度小程序,本程序是点大商城V2独立版,包含全部插件,代码全开源,并且有VUE全端代码。分销&am…...
Redo Log(重做日志)的刷盘策略
1. 概述 Redo Log(重做日志)是 InnoDB 存储引擎中的一种关键组件,用于保障数据库事务的持久性和崩溃恢复。InnoDB 将事务所做的更改先记录到重做日志,之后再将其应用到磁盘上的数据页。 刷盘策略(Flush Policy&#x…...
QT窗体之间值的传递,多种方法实现
目录 1. 信号和槽机制 2. 全局变量或单例模式 3. 事件过滤器 4. Qt属性系统 5. 使用QSettings类 在Qt中,有多种方法可以在窗体之间传递值。下面是一些常用的方法: 1. 信号和槽机制 使用Qt的信号和槽机制是一种常见的方式来在窗体之间传递值。您可以…...
政务服务技能竞赛中用到的软件和硬件
政务服务技能竞赛包括争上游、抢先机、秀风采、比擂台几个环节,用到选手端平板、评委端平板、主持人平板、抢答器等设备、抢答器等。分别计算团队分和个人分。答题规则和计分方案均较为复杂,一般竞赛软件无法实现,要用到高端竞赛软件…...
tcp/ip该来的还是得来
1. TCP/IP、Http、Socket的区别 \qquad 区别是:TCP/IP即传输控制/网络协议,也叫作网络通讯协议,它是在网络的使用中的最基本的通信协议。Http是一个简单的请求-响应协议,它通常运行在TCP之上。Socket是对网络中不同主机上的应用进…...
OpenCV官方教程中文版 —— 图像修复
OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习: • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片,有时候…...
前端难学还是后端难学?系统安全,web安全,网络安全是什么区别?
系统安全,web安全,网络安全是什么区别?三无纬度安全问题 系统安全,可以说是电脑软件的安全问题,比如windows经常提示修复漏洞,是一个安全问题 网页安全,网站安全,比如,…...
diffusers-Load pipelines,models,and schedulers
https://huggingface.co/docs/diffusers/using-diffusers/loadinghttps://huggingface.co/docs/diffusers/using-diffusers/loading 有一种简便的方法用于推理是至关重要的。扩散系统通常由多个组件组成,如parameterized model、tokenizers和schedulers,…...
私域营销必备:轻松掌握微信CRM管理方法
大家在微信私域营销中都遇到了什么问题? 比如管理时间不够,群发实效性低,自动回复无法适应变化等等。 我们可以利用微信CRM这个工具,轻松解决这些问题。 请问你们最想用这个工具解决什么问题呢? 使用微信CRM不仅可…...
最长回文子串-LeetCode5 动态规划
由于基础还不是很牢固 一时间只能想到暴力的解法: 取遍每个子串 总数量nn-1n-2…1 O(n^2) 判断每个子串是否属于回文串 O(n) 故总时间复杂度为O(n^3) class Solution { public:string longestPalindrome(string s) { int max0;string ret;for(int i0;i<s.size();i)for(int…...
mysql简单备份和恢复
版本:mysql8.0 官方文档 :MySQL :: MySQL 8.0 Reference Manual :: 7 Backup and Recovery 1.物理备份恢复 物理备份是以数据文件形式备份。这种方式效率高点,适合大型数据库备份。物理备份可冷备可热备。 使用mysqlbackup 命令进行物理备…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...
电脑桌面太单调,用Python写一个桌面小宠物应用。
下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...
