当前位置: 首页 > news >正文

【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)

【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)

在LSTM预测过程中,极易出现时间滞后,类似于下图,与一个以上的样本点结果错位,产生滞后的效果。
在这里插入图片描述
在建模过程中,输入与输出之间关系的建立,周期性样本选择以及数据处理方式等都会产生影响。

影响因素讨论:
①数据预处理方式
②数据输入输出关系构造

二、案例分析——训练集测试集拟合:

1、数据情况

一列数据:
2007-2023年月度数据,168*1
在这里插入图片描述

2、多输入多输出(M-1输入,M-1输出)

(1)训练集和测试集单独标准化处理(SJCL1)

XTrain= dataTrainStandardized (1:M-1,:);% 训练输入
YTrain = dataTrainStandardized(2:M,:);% 训练输出
XTest = dataTestStandardized(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(2:N,:);%测试输出

训练集拟合情况:
在这里插入图片描述
测试集拟合情况:
在这里插入图片描述
训练集数据的MAE为:6.753
验证集数据的MAE为:15.8771
训练集数据的RMSE为:12.0964
验证集数据的RMSE为:19.5052
训练集数据的MSE为:146.3234
验证集数据的MSE为:380.4535
训练集数据的R2为:0.97525
测试集数据的R2为:0.92702

(2)训练集和测试集整体标准化处理(SJCL3)

XTrain= dataStandardized (1:M-1,:);% 训练输入
YTrain = dataStandardized(2:M,:);% 训练输出
XTest = dataStandardized(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(2:N,:);%测试输出

训练集拟合情况:
在这里插入图片描述

测试集拟合情况:
在这里插入图片描述

训练集数据的MAE为:5.0941
验证集数据的MAE为:12.6767
训练集数据的RMSE为:7.9809
验证集数据的RMSE为:16.9913
训练集数据的MSE为:63.6942
验证集数据的MSE为:288.7044
训练集数据的R2为:0.98875
测试集数据的R2为:0.947

(3)训练集和测试集单独归一化处理(SJCL5)

XTrain= dataTrainNormalization(1:M-1,:);% 训练输入
YTrain = dataTrainNormalization(2:M,:);% 训练输出
XTest = dataTestNormalization(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestNormalization(2:N,:);%测试输出

3、多输入多输出(M输入,M输出)

(1)训练集和测试集单独标准化处理(SJCL2)

XTrain= dataTrainStandardized (1:M,:);% 训练输入
YTrain = dataTrainStandardized(2:M+1,:);% 训练输出
XTest = dataTestStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(1:N,:);%测试输出

训练集拟合情况:
在这里插入图片描述
测试集拟合情况:
在这里插入图片描述

训练集数据的MAE为:29.8318
验证集数据的MAE为:26.5024
训练集数据的RMSE为:57.9399
验证集数据的RMSE为:41.4219
训练集数据的MSE为:3357.0305
验证集数据的MSE为:1715.7726
训练集数据的R2为:0.48215
测试集数据的R2为:0.7138

(2)训练集和测试集单独标准化处理(SJCL4)

XTrain= dataStandardized (1:M,:);% 训练输入
YTrain = dataStandardized(2:M+1,:);% 训练输出
XTest = dataStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(1:N,:);%测试输出

训练集拟合情况:
在这里插入图片描述
测试集拟合情况:
在这里插入图片描述
训练集数据的MAE为:29.8668
验证集数据的MAE为:23.625
训练集数据的RMSE为:59.1022
验证集数据的RMSE为:50.4366
训练集数据的MSE为:3493.0708
验证集数据的MSE为:2543.8486
训练集数据的R2为:0.48001
测试集数据的R2为:0.6037

6、多输入多输出(训练集和测试集单独归一化处理)

XTrain= dataStandardized (1:M,:);% 训练输入
YTrain = dataStandardized(2:M+1,:);% 训练输出
XTest = dataStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(1:N,:);%测试输出

训练集拟合情况:

在这里插入图片描述

测试集拟合情况:
在这里插入图片描述
预测未来12个月:
在这里插入图片描述

2、数据集构造(训练集和测试集单独标准化处理)

XTrain= dataTrainStandardized (1:M-1,:);% 训练输入
YTrain = dataTrainStandardized(2:M,:);% 训练输出
XTest = dataTestStandardized(0:N,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(1:N,:);%测试输出

LSTM优化后:
LSTM训练集拟合效果:

在这里插入图片描述
测试集拟合效果:

在这里插入图片描述
LSTM预测未来12个月:
在这里插入图片描述

相关文章:

【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)

【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中) 在LSTM预测过程中,极易出现时间滞后,类似于下图,与一个以上的样本点结果错位,产生滞后的效果。 在建模过程中&#xf…...

订单业务和系统设计(一)

一、背景简介 订单其实很常见,在电商购物、外卖点餐、手机话费充值等生活场景中,都能见到它的影子。那么,一笔订单的交易过程是什么样子的呢?文章尝试从订单业务架构和产品功能流程,描述对订单的理解。 二、订单业务…...

安全模型的分类与模型介绍

安全模型的分类 基本模型:HRU机密性模型:BLP、Chinese Wall完整性模型:Biba、Clark-Wilson BLP模型 全称(Bell-LaPadula)模型,是符合军事安全策略的计算机安全模型。 BLP模型的安全规则: 简…...

I/O多路转接之select

承接上文:I/O模型之非阻塞IO-CSDN博客 简介 select函数原型介绍使用 一个select简单的服务器的代码书写 select的缺点 初识select 系统提供select函数来实现多路复用输入/输出模型 select系统调用是用来让我们的程序监视多个文件描述符的状态变化的; 程序会停在s…...

“如何对TXT文件的内容进行连续行删除?实现一键文件整理!

如果你有一个TXT文件,需要删除其中的连续行,这可能是为了整理文件、去除重复信息或清除不需要的文本。尽管手动删除每一行可能很耗时,但幸运的是,有一个简单而高效的方法可以帮助你实现这个目标。 首先,在首助编辑高手…...

stable diffusion公司发布4款LLM大语言模型,为何大家都喜爱LLM?

stable diffusion模型是Stability AI开源的一个text-to-image的扩散模型,其模型在速度与质量上面有了质的突破,玩家们可以在自己消费级GPU上面来运行此模型,本模型基于CompVis 和 Runway 团队的Latent Diffusion Models。本期我们不介绍stabl…...

堆排序--C++实现

1. 简介 堆排序利用的是堆序性,最小堆进行从大到小的排序。 先建初堆,保证堆序性。将堆顶元素与最后一个元素交换, 就将当前堆中的最大(小)的元素放到了最后后。堆大小递减,再重新调整堆选出第二大,重复上述过程。 2…...

【数据结构】数组和字符串(十四):字符串匹配1:朴素的模式匹配算法(StringMatching)

文章目录 4.3 字符串4.3.1 字符串的定义与存储4.3.2 字符串的基本操作4.3.3 模式匹配算法1. 算法原理2. ADL语言3. 伪代码4. C语言实现5 时间复杂度 4.3 字符串 字符串(String)是由零个或多个字符(char)顺序排列组成的有限序列,简称为串。例如 “good morning”就是…...

VMWare虚拟机问题

镜像下载 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区...

代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II

目录 一、(leetcode 62)不同路径 1.动态规划 1)确定dp数组(dp table)以及下标的含义 2)确定递推公式 3)dp数组的初始化 4)确定遍历顺序 5)举例推导dp数组 2.数论方…...

白帽黑客入门,“每天一个黑客技巧”实现黑客的自我突破 !(附工具包!)

年底了,不少朋友都是在总结一年的学习成果。最后发现完成情况与自己最初定下的目标相去甚远。 同时也针对粉丝和网上大部分存在的问题进行了整理: “为什么我感觉学安全好难?” “渗透测试到底该怎么学?” “为什么总是挖不到漏…...

Jmeter参数化 —— 循环断言多方法

1、参数化接口测试数据 注意:csv文档参数化,里面有多少条数据,就要在线程组里循环多少次,不然就只执行一次 2、添加配置元件-计数器 关于计数器 ①Starting Value:给定计数器的初始值; ②递增:每次循环迭代…...

Autosar诊断实战系列26-Dem(DTCEvent)要点及配置开发详解

本文框架 前言1. Dem及其与其他模块交互介绍1.1 与DCM模块交互1.1.1 0x14服务调用时序1.1.2 0x85服务调用时序1.1.3 0x19服务调用时序1.2 与Fim模块交互1.3 与NvM模块交互1.4 与BswM模块交互1.5 与其他BSW及APP模块交互2. Dem配置开发介绍2.1 DemGeneral配置2.1.1 DemGeneral一…...

STL(第五课):queue

STL&#xff08;标准模板库&#xff09;是一种C标准库&#xff0c;在其中包含了许多常用的数据结构和算法。其中&#xff0c;queue就是STL库中的一个数据结构&#xff0c;用于实现队列&#xff08;先进先出FIFO&#xff09;。 使用STL queue&#xff0c;需要引入头文件<queu…...

点大商城V2版 2.5.2.1 全开源独立版 多小程序端+unipp安装教程

点大商城V2是一款采用全新界面设计支持多端覆盖的小程序应用&#xff0c;支持H5、微信公众号、微信小程序、头条小程序、支付宝小程序、百度小程序&#xff0c;本程序是点大商城V2独立版&#xff0c;包含全部插件&#xff0c;代码全开源&#xff0c;并且有VUE全端代码。分销&am…...

Redo Log(重做日志)的刷盘策略

1. 概述 Redo Log&#xff08;重做日志&#xff09;是 InnoDB 存储引擎中的一种关键组件&#xff0c;用于保障数据库事务的持久性和崩溃恢复。InnoDB 将事务所做的更改先记录到重做日志&#xff0c;之后再将其应用到磁盘上的数据页。 刷盘策略&#xff08;Flush Policy&#x…...

QT窗体之间值的传递,多种方法实现

目录 1. 信号和槽机制 2. 全局变量或单例模式 3. 事件过滤器 4. Qt属性系统 5. 使用QSettings类 在Qt中&#xff0c;有多种方法可以在窗体之间传递值。下面是一些常用的方法&#xff1a; 1. 信号和槽机制 使用Qt的信号和槽机制是一种常见的方式来在窗体之间传递值。您可以…...

政务服务技能竞赛中用到的软件和硬件

政务服务技能竞赛包括争上游、抢先机、秀风采、比擂台几个环节&#xff0c;用到选手端平板、评委端平板、主持人平板、抢答器等设备、抢答器等。分别计算团队分和个人分。答题规则和计分方案均较为复杂&#xff0c;一般竞赛软件无法实现&#xff0c;要用到高端竞赛软件&#xf…...

tcp/ip该来的还是得来

1. TCP/IP、Http、Socket的区别 \qquad 区别是&#xff1a;TCP/IP即传输控制/网络协议&#xff0c;也叫作网络通讯协议&#xff0c;它是在网络的使用中的最基本的通信协议。Http是一个简单的请求-响应协议&#xff0c;它通常运行在TCP之上。Socket是对网络中不同主机上的应用进…...

OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习&#xff1a; • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片&#xff0c;有时候…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...