【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)
【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)
在LSTM预测过程中,极易出现时间滞后,类似于下图,与一个以上的样本点结果错位,产生滞后的效果。

在建模过程中,输入与输出之间关系的建立,周期性样本选择以及数据处理方式等都会产生影响。
影响因素讨论:
①数据预处理方式
②数据输入输出关系构造
二、案例分析——训练集测试集拟合:
1、数据情况
一列数据:
2007-2023年月度数据,168*1

2、多输入多输出(M-1输入,M-1输出)
(1)训练集和测试集单独标准化处理(SJCL1)
XTrain= dataTrainStandardized (1:M-1,:);% 训练输入
YTrain = dataTrainStandardized(2:M,:);% 训练输出
XTest = dataTestStandardized(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(2:N,:);%测试输出
训练集拟合情况:

测试集拟合情况:

训练集数据的MAE为:6.753
验证集数据的MAE为:15.8771
训练集数据的RMSE为:12.0964
验证集数据的RMSE为:19.5052
训练集数据的MSE为:146.3234
验证集数据的MSE为:380.4535
训练集数据的R2为:0.97525
测试集数据的R2为:0.92702
(2)训练集和测试集整体标准化处理(SJCL3)
XTrain= dataStandardized (1:M-1,:);% 训练输入
YTrain = dataStandardized(2:M,:);% 训练输出
XTest = dataStandardized(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(2:N,:);%测试输出
训练集拟合情况:

测试集拟合情况:

训练集数据的MAE为:5.0941
验证集数据的MAE为:12.6767
训练集数据的RMSE为:7.9809
验证集数据的RMSE为:16.9913
训练集数据的MSE为:63.6942
验证集数据的MSE为:288.7044
训练集数据的R2为:0.98875
测试集数据的R2为:0.947
(3)训练集和测试集单独归一化处理(SJCL5)
XTrain= dataTrainNormalization(1:M-1,:);% 训练输入
YTrain = dataTrainNormalization(2:M,:);% 训练输出
XTest = dataTestNormalization(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestNormalization(2:N,:);%测试输出
3、多输入多输出(M输入,M输出)
(1)训练集和测试集单独标准化处理(SJCL2)
XTrain= dataTrainStandardized (1:M,:);% 训练输入
YTrain = dataTrainStandardized(2:M+1,:);% 训练输出
XTest = dataTestStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(1:N,:);%测试输出
训练集拟合情况:

测试集拟合情况:

训练集数据的MAE为:29.8318
验证集数据的MAE为:26.5024
训练集数据的RMSE为:57.9399
验证集数据的RMSE为:41.4219
训练集数据的MSE为:3357.0305
验证集数据的MSE为:1715.7726
训练集数据的R2为:0.48215
测试集数据的R2为:0.7138
(2)训练集和测试集单独标准化处理(SJCL4)
XTrain= dataStandardized (1:M,:);% 训练输入
YTrain = dataStandardized(2:M+1,:);% 训练输出
XTest = dataStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(1:N,:);%测试输出
训练集拟合情况:

测试集拟合情况:

训练集数据的MAE为:29.8668
验证集数据的MAE为:23.625
训练集数据的RMSE为:59.1022
验证集数据的RMSE为:50.4366
训练集数据的MSE为:3493.0708
验证集数据的MSE为:2543.8486
训练集数据的R2为:0.48001
测试集数据的R2为:0.6037
6、多输入多输出(训练集和测试集单独归一化处理)
XTrain= dataStandardized (1:M,:);% 训练输入
YTrain = dataStandardized(2:M+1,:);% 训练输出
XTest = dataStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(1:N,:);%测试输出
训练集拟合情况:

测试集拟合情况:

预测未来12个月:

2、数据集构造(训练集和测试集单独标准化处理)
XTrain= dataTrainStandardized (1:M-1,:);% 训练输入
YTrain = dataTrainStandardized(2:M,:);% 训练输出
XTest = dataTestStandardized(0:N,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(1:N,:);%测试输出
LSTM优化后:
LSTM训练集拟合效果:

测试集拟合效果:

LSTM预测未来12个月:

相关文章:
【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)
【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中) 在LSTM预测过程中,极易出现时间滞后,类似于下图,与一个以上的样本点结果错位,产生滞后的效果。 在建模过程中…...
订单业务和系统设计(一)
一、背景简介 订单其实很常见,在电商购物、外卖点餐、手机话费充值等生活场景中,都能见到它的影子。那么,一笔订单的交易过程是什么样子的呢?文章尝试从订单业务架构和产品功能流程,描述对订单的理解。 二、订单业务…...
安全模型的分类与模型介绍
安全模型的分类 基本模型:HRU机密性模型:BLP、Chinese Wall完整性模型:Biba、Clark-Wilson BLP模型 全称(Bell-LaPadula)模型,是符合军事安全策略的计算机安全模型。 BLP模型的安全规则: 简…...
I/O多路转接之select
承接上文:I/O模型之非阻塞IO-CSDN博客 简介 select函数原型介绍使用 一个select简单的服务器的代码书写 select的缺点 初识select 系统提供select函数来实现多路复用输入/输出模型 select系统调用是用来让我们的程序监视多个文件描述符的状态变化的; 程序会停在s…...
“如何对TXT文件的内容进行连续行删除?实现一键文件整理!
如果你有一个TXT文件,需要删除其中的连续行,这可能是为了整理文件、去除重复信息或清除不需要的文本。尽管手动删除每一行可能很耗时,但幸运的是,有一个简单而高效的方法可以帮助你实现这个目标。 首先,在首助编辑高手…...
stable diffusion公司发布4款LLM大语言模型,为何大家都喜爱LLM?
stable diffusion模型是Stability AI开源的一个text-to-image的扩散模型,其模型在速度与质量上面有了质的突破,玩家们可以在自己消费级GPU上面来运行此模型,本模型基于CompVis 和 Runway 团队的Latent Diffusion Models。本期我们不介绍stabl…...
堆排序--C++实现
1. 简介 堆排序利用的是堆序性,最小堆进行从大到小的排序。 先建初堆,保证堆序性。将堆顶元素与最后一个元素交换, 就将当前堆中的最大(小)的元素放到了最后后。堆大小递减,再重新调整堆选出第二大,重复上述过程。 2…...
【数据结构】数组和字符串(十四):字符串匹配1:朴素的模式匹配算法(StringMatching)
文章目录 4.3 字符串4.3.1 字符串的定义与存储4.3.2 字符串的基本操作4.3.3 模式匹配算法1. 算法原理2. ADL语言3. 伪代码4. C语言实现5 时间复杂度 4.3 字符串 字符串(String)是由零个或多个字符(char)顺序排列组成的有限序列,简称为串。例如 “good morning”就是…...
VMWare虚拟机问题
镜像下载 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区...
代码随想录算法训练营第23期day39 |62.不同路径、63. 不同路径 II
目录 一、(leetcode 62)不同路径 1.动态规划 1)确定dp数组(dp table)以及下标的含义 2)确定递推公式 3)dp数组的初始化 4)确定遍历顺序 5)举例推导dp数组 2.数论方…...
白帽黑客入门,“每天一个黑客技巧”实现黑客的自我突破 !(附工具包!)
年底了,不少朋友都是在总结一年的学习成果。最后发现完成情况与自己最初定下的目标相去甚远。 同时也针对粉丝和网上大部分存在的问题进行了整理: “为什么我感觉学安全好难?” “渗透测试到底该怎么学?” “为什么总是挖不到漏…...
Jmeter参数化 —— 循环断言多方法
1、参数化接口测试数据 注意:csv文档参数化,里面有多少条数据,就要在线程组里循环多少次,不然就只执行一次 2、添加配置元件-计数器 关于计数器 ①Starting Value:给定计数器的初始值; ②递增:每次循环迭代…...
Autosar诊断实战系列26-Dem(DTCEvent)要点及配置开发详解
本文框架 前言1. Dem及其与其他模块交互介绍1.1 与DCM模块交互1.1.1 0x14服务调用时序1.1.2 0x85服务调用时序1.1.3 0x19服务调用时序1.2 与Fim模块交互1.3 与NvM模块交互1.4 与BswM模块交互1.5 与其他BSW及APP模块交互2. Dem配置开发介绍2.1 DemGeneral配置2.1.1 DemGeneral一…...
STL(第五课):queue
STL(标准模板库)是一种C标准库,在其中包含了许多常用的数据结构和算法。其中,queue就是STL库中的一个数据结构,用于实现队列(先进先出FIFO)。 使用STL queue,需要引入头文件<queu…...
点大商城V2版 2.5.2.1 全开源独立版 多小程序端+unipp安装教程
点大商城V2是一款采用全新界面设计支持多端覆盖的小程序应用,支持H5、微信公众号、微信小程序、头条小程序、支付宝小程序、百度小程序,本程序是点大商城V2独立版,包含全部插件,代码全开源,并且有VUE全端代码。分销&am…...
Redo Log(重做日志)的刷盘策略
1. 概述 Redo Log(重做日志)是 InnoDB 存储引擎中的一种关键组件,用于保障数据库事务的持久性和崩溃恢复。InnoDB 将事务所做的更改先记录到重做日志,之后再将其应用到磁盘上的数据页。 刷盘策略(Flush Policy&#x…...
QT窗体之间值的传递,多种方法实现
目录 1. 信号和槽机制 2. 全局变量或单例模式 3. 事件过滤器 4. Qt属性系统 5. 使用QSettings类 在Qt中,有多种方法可以在窗体之间传递值。下面是一些常用的方法: 1. 信号和槽机制 使用Qt的信号和槽机制是一种常见的方式来在窗体之间传递值。您可以…...
政务服务技能竞赛中用到的软件和硬件
政务服务技能竞赛包括争上游、抢先机、秀风采、比擂台几个环节,用到选手端平板、评委端平板、主持人平板、抢答器等设备、抢答器等。分别计算团队分和个人分。答题规则和计分方案均较为复杂,一般竞赛软件无法实现,要用到高端竞赛软件…...
tcp/ip该来的还是得来
1. TCP/IP、Http、Socket的区别 \qquad 区别是:TCP/IP即传输控制/网络协议,也叫作网络通讯协议,它是在网络的使用中的最基本的通信协议。Http是一个简单的请求-响应协议,它通常运行在TCP之上。Socket是对网络中不同主机上的应用进…...
OpenCV官方教程中文版 —— 图像修复
OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习: • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片,有时候…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
