PaddleMIX学习笔记(1)
写在前面
之前对HyperLedger的阅读没有完全结束,和很多朋友一样,同时也因为工作的需要,最近开始转向LLM方向。
国内在大模型方面生态做的最好的,目前还是百度的PaddlePaddle,所以自己也就先从PP开始看起了。
众所周知,目前在LLM领域比较成熟的场景,还是文字方面,包括文字的阅读和生成,即对输入内容的处理和根据提示输出文字两种,大家看到的也都很多了。但是我的工作内容需要对图片,特别是各种报告中的图进行解读和处理,目前还没有很好的案例,于是自己就想基于PP做一些尝试,所以开始看PaddleMIX这个项目了。如果朋友们在这个领域有好的想法,也请在评论里不吝赐教。
简介
PaddleMix的前身是ppdiffusers,最开始只是专注在扩散模型。众所周知GAI早期重视Prompt,到2023年中开始重视多模态和Agent后,ppdiffusers从PaddleNLP独立出来,专注于多模态。
https://github.com/PaddlePaddle/PaddleMIX
官方的介绍是:PaddleMIX是基于飞桨的跨模态大模型开发套件,聚合图像、文本、视频等多种模态,覆盖视觉语言预训练,文生图,文生视频等丰富的跨模态任务。
2023.7.31 发布 PaddleMIX v0.1,这个版本是从PPDiffusers升级后发布的第一个版本。
2023.10.7 发布 PaddleMIX v1.0,算是第一个正式版。
特性
这里也直接摘取官方的介绍了
- 丰富的多模态功能: 覆盖图文预训练,文生图,跨模态视觉任务,实现图像编辑、图像描述、数据标注等多样功能
- 简洁的开发体验: 模型统一开发接口,高效实现自定义模型开发和功能实现
- 高效的训推流程: 全量模型打通训练推理一站式开发流程,BLIP-2,Stable Diffusion等重点模型训推性能业界领先
- 超大规模训练支持: 可训练千亿规模图文预训练模型,百亿规模文生图底座模型
模型库
包括两大类,多模态预训练库和扩散类模型,简单讲就是一个是用于训练的,一个是用于应用的。
多模态预训练库包括
- 图文预训练
- EVA-CLIP
- CoCa
- CLIP
- BLIP-2
- miniGPT-4
- VIsualGLM
- 开放世界视觉模型
- Grounding DINO
- SAM
- 更多模态预训练模型
- ImageBind
扩散类模型包括
- 文生图
- Stable Diffusion
- ControlNet
- LDM
- Unidiffuser
- 文生视频
- LVDM
- 音频生成
- AudioLDM
代码结构
-
applications
应用示例基于paddlevlp、ppdiffusers和paddlenlp。提示一下,虽然PaddleMix项目已经建立了独立的repo,但是后续的操作大多需要提前安装PaddlePaddle和PaddleNLP,参考链接https://github.com/PaddlePaddle/PaddleNLP/blob/develop/docs/get_started/installation.rst
这里包括了开放世界检测分割(Openset-Det-Sam),自动标注(AutoLabel),检测框引导的图像编辑(Det-Guided-Inpainting),文图生成(Text-to-Image Generation),文本引导的图像放大(Text-Guided Image Upscaling),文本引导的图像编辑(Text-Guided Image Inpainting),文本引导的图像变换(Image-to-Image Text-Guided Generation),文本条件的视频生成(Text-to-Video Generation),音频生成图像(Audio-to-Image Generation),音频描述(Audio-to-Caption Generation),音频对话(Audio-to-Chat Generation),音乐生成(Music Generation)这么几个应用。
前边三个都是比较传统,在有大模型之前已经有的可以基于传统机器学习能力构建的应用。后边的才是文字和音视频组合,称得上是真正的多模态的应用。 -
deploy 导出和部署训练后的模型
-
docs/demo 就俩图片,没有文档
-
paddlemix
项目的核心目录,主要包括如下几个目录
1).appflow appflow是PaddleMIX应用环节的主目录。这个模块的关键词是flow,是用于解决具体场景,打包的应用流程,算是一个轻量级的sdk吧。比如text2image_generation,定义了StableDiffusionTask,只需要将任务所需的参数封装到AppTask中作为入参给到这个Task,后边就启动这个任务就行了,至于构建模型_construct_model,预处理_preprocess,以及运行模型_run_model,都不需要开发者关心了。和早年工作流中的执行引擎是很类似的。
2).datasets 数据集,提供了数据集处理的工具,不是实际的数据集。
3).examples 代码样例,包含了visualglm,groundingdion等样例。每个样例基本都可以直接在git clone安装依赖后,通过run_predict.py执行。
4).models 模型处理工具类,针对用到的不同模型,有各自的训练处理工具。
5).processors 数据预处理工具类,包括tokenizer.py这样的核心工具。应该是主要用于flow里边preprocess环节。
6).trainer 模型训练工具类,用来做调优和预/训练等。 -
ppdiffusers
扩散模型的核心目录,也是整个PaddleMix的前身。目前在PaddleMix中是相对完整和独立的一套多模态工具集,虽然整合到了paddlemix中,但是还是可以单独使用的,也许是为了保持向后兼容吧。它和整个PaddleMix的发布节奏也相对独立,目前是在2023.9.27日发布了0.19.3版本。
ppdiffusers目录的结构和上层paddlemix的结构类似,也包含了类似appflow的scheduler,训练工具models,部署工具deploy等 -
scripts 脚本.主要包含了一个扩散模型转换的脚本,用于其他扩散模型转换到paddle的模型,还有一个是cocoeval,用于基于coco验证集评估模型。
-
tests 测试用例,主要包括了appflow和models两个测试集。
另外在测试中遇到的几个基础问题简单给大家提个醒。
1.如果测试环境使用虚机,要开启VT嵌套,否则会因为不支持AVX指令集,而导致会提示illegal instruction。或者使用windows的WSL。
2.PPMix项目存在国内大多项目存在的问题,文档并不够完善。PaddleMix项目目前是独立的,在安装中提到PaddlePaddle和PaddleNLP不多。如果测试中出现缺少各种包的情况时,一定要去PaddlePaddle项目和PaddleNLP项目里找,把相关的前置依赖都安装好,一般就没什么问题了。
3.接2,安装文档中很多pyhon依赖都指向了清华的镜像,个人建议使用百度官方的https://mirror.baidu.com/pypi/simple镜像,目前没有发现版本等问题,速度也很快。不知道为什么百度官方的文档不使用自己的镜像,很是诡异,难道是复制的ChatGLM的文档?。
4.如果有可能,可以使用百度的aistudio的juypter环境来做测试,会比自己搭建要省事不少。
相关文章:
PaddleMIX学习笔记(1)
写在前面 之前对HyperLedger的阅读没有完全结束,和很多朋友一样,同时也因为工作的需要,最近开始转向LLM方向。 国内在大模型方面生态做的最好的,目前还是百度的PaddlePaddle,所以自己也就先从PP开始看起了。 众所周知…...
【网络协议】聊聊HTTPS协议
前面的文章,我们描述了网络是怎样进行传输数据包的,但是网络是不安全的,对于这种流量门户网站其实还好,对于支付类场景其实容易将数据泄漏,所以安全的方式是通过加密,加密方式主要是对称加密和非对称加密。…...
2023.11.2事件纪念
然而造化又常常为庸人设计,以时间的流逝,来洗涤旧迹,仅以留下淡红的血色和微漠的悲哀。 回顾这次事件,最深的感触就是什么是团队的力量! 当我们看到希望快要成功的时候,大家洋溢出兴奋开心的表情,一起的欢声笑语;但看…...
Scala和Play WS库编写的爬虫程序
使用Scala和Play WS库编写的爬虫程序,该程序将爬取网页内容: import play.api.libs.ws._ import scala.concurrent.ExecutionContext.Implicits.global object BaiduCrawler {def main(args: Array[String]): Unit {val url ""val proxy…...
佳易王配件进出库开单打印进销存管理系统软件下载
用版配件进出库开单打印系统,可以有效的管理:供货商信息,客户信息,进货入库打印,销售出库打印,进货明细或汇总统计查询,销售出库明细或汇总统计查询,库存查询,客户往来账…...
【深度学习基础】专业术语汇总(欠拟合和过拟合、泛化能力与迁移学习、调参和超参数、训练集、测试集和验证集)
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...
【C语言:函数栈帧的创建与销毁】
文章目录 前言一、前期准备1.寄存器2.汇编指令3.测试代码 二、解开函数栈帧的神秘面纱1.栈帧大体轮廓2.main函数栈帧的创建3.main函数内执行有效代码4.烫烫烫5.函数参数的传递6.add函数栈帧的创建7.add函数内执行有效代码8.add是如何获得参数的9. add函数栈帧的销毁10.main函数…...
怎么在C++中实现云端存储变量
随着云计算技术的快速发展,现在我们可以将数据存储在云端,以便于在不同设备和地点访问。在C中,我们也可以通过一些方法来实现这个功能。本文将详细介绍如何在C中实现云端存储变量。 首先,我们需要理解,C本身并没有直接…...
短视频矩阵营销系统工具如何助力商家企业获客?
1.批量剪辑技术研发 做的数学建模算法,数学阶乘的组合乘组形式,采用两套查重机制,一套针对素材进行查重抽帧素材,一套针对成片进行抽帧素材打分制度查重,自动滤重计入打分。 2.账号矩阵分发开发 多平台,…...
PCL 计算一个平面与包围盒体素的相交线
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 基于之前计算的包围盒体素(PCL 包围盒体素化显示),这里使用一个平面与其进行相交,并求出与其中体素单元的相交线。 二、实现代码 //标准文件 #include <iostream> #include <thread>//PCL...
面向教育的计算机视觉和深度学习5
面向教育的计算机视觉和深度学习5 1. 好处智能内容(Smart Content)任务自动化(Task Automation)缩小技能差距(Closing Skill Gap) 2. 应用程序学生学习与福利(Student Learning and Welfare&…...
FPGA芯片内部结构
参考链接:FPGA的进阶之第二章FPGA芯片内部结构(2)...
人工智能AI创作系统ChatGPT网站系统源码+AI绘画系统支持GPT4.0/支持Midjourney局部重绘
一、前言 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建…...
Google 开源项目风格指南
目录 C 风格指南 Objective-C 风格指南 Python 风格指南 Shell 风格指南 TypeScript 风格指南 Javascript 风格指南 HTML/CSS 风格指南 C 风格指南 C 风格指南 - 内容目录 — Google 开源项目风格指南 Objective-C 风格指南 Objective-C 风格指南 - 内容目录 — Googl…...
无限上下文,多级内存管理!突破ChatGPT等大语言模型上下文限制
目前,ChatGPT、Llama 2、文心一言等主流大语言模型,因技术架构的问题上下文输入一直受到限制,即便是Claude 最多只支持10万token输入,这对于解读上百页报告、书籍、论文来说非常不方便。 为了解决这一难题,加州伯克利…...
学习剑指jvm
一直弱,jvm 1、主要解决运行状态的线上系统突然卡死,造成系统无法访问,甚至直接内存溢出异常(Out of Memory,OOM) 2、希望解决线上JVM垃圾回收的相关问题,但无从下手。 3、新项目上线,对设置…...
java网络通信
浏览器中输入:“www.woaijava.com”之后都发生了什么? 请详细阐述 由域名→IP地址 寻找IP地址的过程依次经过了浏览器缓存、系统缓存、hosts文件、路由器缓存、 递归搜索根域名服务器。 建立TCP/IP连接(三次握手具体过程) 由浏览…...
Three.js之加载外部三维模型
参考资料 建模软件绘制3D场景…加载.gltf文件(模型加载全流程) 知识点 注:基于Three.jsv0.155.0 三维建模软件gltf格式加载.gltf文件 三维建模软件 D美术常用的三维建模软件,比如Blender、3dmax、C4D、maya等等 Blender(轻量开源)3dmaxC4Dmaya 特…...
【机器学习】正规方程与梯度下降API及案例预测
正规方程与梯度下降API及案例预测 文章目录 正规方程与梯度下降API及案例预测1. 正规方程与梯度下降正规方程(Normal Equation)梯度下降(Gradient Descent) 2. API3. 波士顿房价预测 1. 正规方程与梯度下降 回归模型是机器学习中…...
【SOC基础】单片机学习案例汇总 Part2:蜂鸣器、数码管显示
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?
FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...
