图及谱聚类商圈聚类中的应用
背景
在O2O业务场景中,有商圈的概念,商圈是业务运营的单元,有对应的商户BD负责人以及配送运力负责任。这些商圈通常是一定地理围栏构成的区域,区域内包括商户和用户,商圈和商圈之间就通常以道路、河流等围栏进行分隔。
对某些业务应用,商圈可能太小,需要将几个到十几个商圈划成一片,按商圈片进行运营。这类划分通常无法纯粹按照商圈地理位置来划分,因为商圈是一个连着一个的。因此,还需要找到商圈之间的其他关联指标,从业务上来说,如果两个商圈的用户重合度很高(比如A商圈中的80%的用户也是B商圈的用户,反之亦然)或者两个商圈的配送运力重合度和高(比如A商圈中的80%的骑手也是B商圈的骑手),那么这两个商圈可以划成一类,因此,用户、配送运力重合度都可以作为商圈之间的关联指标。
本文介绍了一种使用谱聚类对商圈进行聚类的方法。
商圈之间关系图构造
把商圈和商圈之间的联系构造为图,具体为:每个商圈是图中的节点,商圈和商圈之间共享用户数占比或者运力占比作为图的边,就可以得到一个城市所有商圈两两之间关系图。
比如,商圈之间的关系数据如下:
| 商圈-source | 商圈-target | 商圈关联指标-weight |
| 73***8 | 9***7 | 71.3% |
| 73***8 | 9***1 | 70.1% |
| 73***8 | 1***51 | 66.2% |
| 73***8 | ... | ... |
| 73***8 | 1***27 | 0.6% |
| 73***8 | 1***95 | 0.6% |
| 73***8 | 7***0 | 0.6% |
使用networkx可以将上述数据转化为关系图。networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。
对于networkx创建的无向图,允许一条边的两个顶点是相同的,即允许出现自循环,但是不允许两个顶点之间存在多条边,即出现平行边。边和顶点都可以有自定义的属性,属性称作边和顶点的数据,每一个属性都是一个Key:Value对。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx# 从数据构造图
g = nx.Graph()
g.add_weighted_edges_from(df_cluster.values)# 图可视化方法一
nx.draw(g, with_labels = True) ### 画可视化方法二
durations = [i['weight'] for i in dict(g.edges).values()]
labels = {i:i for i in dict(g.nodes).keys()}fig, ax = plt.subplots(figsize=(10,6))
pos = nx.spring_layout(g)
nx.draw_networkx_nodes(g, pos, ax = ax, label = True)
nx.draw_networkx_edges(g, pos, width = durations, ax = ax)
_ = nx.draw_networkx_labels(g, pos, labels, ax = ax)

商圈聚类
基本思想
这里使用谱聚类的方法。谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。如果把这些连线加上一个权重,就叫做加权图。
如果连线越长则权重越小,连线越短则权重越大,然后把权重最小的边切断,使得一个图变成两个图,便完成了一次聚类,这就是谱算法的基本思路,而其基本流程,就是构图->切图。
所以,问题来了,如何构图?若将所有的点都连接起来,这显然有些离谱,毕竟这种平方级别的复杂度不是一般内存能吃得消的,作为有一点聚类基础的人,第一时间就会想到KNN算法,即k近邻。
由于谱聚类中,两个点是否要被切断,最关键的因素是短边而非长边,所以只要将点与其最近的k个点连接起来就行了。这样得到的图有一个问题,即x最近的k个点中可能有y,但y最近的k个点中可能没有x,像极了女神和你。
对此有两种解决方案,一种是x也不要y了,另一种是强制让x加入到y的近邻中。
除了k近邻之外,还可以定死一个距离r,凡是距离小于r的都连线,大于r的都不连线。由于点和点之间的距离往往相差较大,故其权重一般会在距离的基础上做一些变换,这个变换在下文乘坐权重函数。
数据转换
这里使用sklearn.cluster.SpectralClustering进行聚类,需要将图g的数据转换为sklearn.cluster.SpectralClustering输入的形式,可以通过临接矩阵来实现。
from sklearn.cluster import SpectralClustering# 得到图的邻接矩阵
adj_matrix = nx.adjacency_matrix(g) # 将节点之间的边信息转换为矩阵的形式,比如matrix[0]表示第1个样本和其他样本之间的关联信息# 可以用nx.adjacency_matrix(g).todense()看邻接矩阵的具体内容nx.adjacency_matrix(g).todense()[0]matrix([[0. , 0.10247934, 0.10582011, 0.27272727, 0.41962422,0.01342282, 0.0210728 , 0.0075188 , 0.48453608, 0.4038055 ,0.04 , 0.43896104, 0.0528109 , 0.00930233, 0.02754821,0.00704225, 0.14554795, 0.03125 , 0.03814714, 0.03878116,0.36616162, 0.0083682 , 0.008 , 0.00487805, 0.12539185,0. , 0. , 0. , 0. , 0. ,0. , 0. , 0. , 0. , 0. ,0. , 0. , 0. , 0. , 0. ,0. , 0. , 0. , 0. , 0. ,0. , 0. , 0. , 0. , 0. ,0. , 0. , 0. , 0. , 0. ,0. , 0. ]])
聚类
# 调用谱聚类模型
sc_model = SpectralClustering(n_clusters=3, # 非常重要的超参数affinity='precomputed',assign_labels='discretize', random_state=0)
clustering = sc_model.fit(adj_matrix)# 聚类结果
print(clustering.labels_)[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1 2 1 2 1 1 1 1 2 1 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 2 0 0 2 0 2 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 2 2 22 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0]
注意,上述聚类结果中对于模型的超参数n_clusters,我们直接设置成了3,这是非常随意的。如果事前没有聚类数的目标期望,一般我们可以尝试不同的的聚类数,然后基于一定的评估标准(此处选择轮廓分),选择最好的聚类数进行聚类。
from sklearn import metrics# 设置不同的聚类数超参数,通过轮廓分评估标准选择最佳聚类数n_clusters_list=[2,3,4,5,6,8,10,12,14,16,18,20]
score_list=[]
for k in n_clusters_list:sc_model = SpectralClustering(n_clusters=k, affinity='precomputed',assign_labels='discretize', random_state=0)clustering = sc_model.fit(adj_matrix)pred_y=sc_model.fit_predict(adj_matrix)score=metrics.silhouette_score(adj_matrix,pred_y)score_list.append(score)plt.xlabel("n_clusters")
plt.ylabel("silhouette_score")
plt.scatter(x = n_clusters_list, y = score_list)
plt.show()

可见,本例中n_clusters = 3的轮廓分最高,因此我们可以设置聚类数为3。
结果展示
如果有商圈围栏的经纬度坐标数据,则可以使用keplergl来查看聚类后的效果。
# 聚类结果可视化check
import keplergl
amap = keplergl.KeplerGl(height = 800)
amap.add_data(data = df['scope_geojson','center_lng','center_lat','cluster_label'])
amap

相关文章:
图及谱聚类商圈聚类中的应用
背景 在O2O业务场景中,有商圈的概念,商圈是业务运营的单元,有对应的商户BD负责人以及配送运力负责任。这些商圈通常是一定地理围栏构成的区域,区域内包括商户和用户,商圈和商圈之间就通常以道路、河流等围栏进行分隔。…...
npx 和 npm 区别
文章目录 背景作用执行流程 背景 解决 npm 之前的执行包中的命令行需要先下载的问题,如果有多个不同版本的包就需要下载多次比如已经装了全局的 webpack 1.x 版本并且还要继续使用,还需要装个 webpack 4.x 使用的其相应功能,这个时候可以不装在全局&…...
HTML_案例1_注册页面
用纯html页面,不用css画一个注册页面。 最终效果如下: html页面代码如下: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册页面</title> </head>…...
Adobe After Effects 2024(Ae2024)在新版本中的升级有哪些?
After Effects 2024是Adobe公司推出的一款视频处理软件,它适用于从事设计和视频特技的机构,包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。通过After Effects,用户可以高效且精确地创建无数种引人注目的动态图形和震撼人心…...
超越 GLIP! | RegionSpot: 识别一切区域,多模态融合的开放世界物体识别新方法
本文的主题是多模态融合和图文理解,文中提出了一种名为RegionSpot的新颖区域识别架构,旨在解决计算机视觉中的一个关键问题:理解无约束图像中的各个区域或patch的语义。这在开放世界目标检测等领域是一个具有挑战性的任务。 关于这一块&…...
webgoat-(A1)injection
SQL Injection (intro) SQL 命令主要分为三类: 数据操作语言 (DML)DML 语句可用于请求记录 (SELECT)、添加记录 (INSERT)、删除记录 (DELETE) 和修改现有记录 ÿ…...
51单片机-中断
文章目录 前言 前言 #include <reg52.h> #include <intrins.h>sbit key_s2P3^0; sbit flagP3^7;void delay(unsigned int z){unsigned int x,y;for(xz;x>0;x--)for(y114;y>0;y--); }void int_init(){EA1;EX11;IT11;}void main(){int_init();while(1){if (key…...
Canvas 梦幻树生长动画
canvas可以制作出非常炫酷的动画,以下是一个梦幻树的示例。 效果图 源代码 <!DOCTYPE> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <title>梦幻数生长动画</title&…...
Unity之UI、模型跟随鼠标移动(自适应屏幕分辨率、锚点、pivot中心点)
一、效果 UI跟随鼠标移动, 动态修改屏幕分辨率、锚点、pivot等参数也不会受到影响。同时脚本中包含3d物体跟随ui位置、鼠标位置移动 二、屏幕坐标、Canvas自适应、锚点、中心点 在说原理之前我们需要先了解屏幕坐标、Canvas自适应、锚点、中心的特性和之间的关系。 1.屏幕坐标…...
竞赛 深度学习猫狗分类 - python opencv cnn
文章目录 0 前言1 课题背景2 使用CNN进行猫狗分类3 数据集处理4 神经网络的编写5 Tensorflow计算图的构建6 模型的训练和测试7 预测效果8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习猫狗分类 ** 该项目较为新颖&a…...
S4.2.4.7 Start of Data Stream Ordered Set (SDS)
一 本章节主讲知识点 1.1 xxx 1.2 sss 1.3 ddd 二 本章节原文翻译 2.1 SDS 数据流开始有序集 SDS 代表传输的数据类型从有序集转为数据流。它会在 Configuration.Idle,Recovery.Idle 和 Tx 的 L0s.FTS 状态发送。Loopback 模式下,主机允许发送 SDS。…...
CentOS操作系统的特点
CentOS操作系统的特点如下: 免费开源:CentOS是一个免费开源的操作系统,完全免费,无需花费任何成本。 稳定性高:CentOS以其出色的稳定性和安全性而闻名。它是一个基于Red Hat Enterprise Linux(RHEL&#x…...
Go基础(待更新)
Go基础(待更新) 参考Go 语言教程 文章目录 Go基础(待更新)一、基本语法1、格式化输出2、声明并赋值1)单变量赋值2)多变量赋值 二、math工具包的使用三、函数1、参数传递1)普通传递2)…...
二、Hadoop分布式系统基础架构
1、分布式 分布式体系中,会存在众多服务器,会造成混乱等情况。那如何让众多服务器一起工作,高效且不出现问题呢? 2、调度 (1)架构 在大数据体系中,分布式的调度主要有2类架构模式:…...
数据结构(超详细讲解!!)第二十一节 特殊矩阵的压缩存储
1.压缩存储的目标 值相同的元素只存储一次 压缩掉对零元的存储,只存储非零元 特殊形状矩阵: 是指非零元(如值相同的元素)或零元素分布具有一定规律性的矩阵。 如: 对称矩阵 上三角矩阵 下三角矩阵 对角矩阵 准…...
Python最强自动化神器Playwright!再也不用为爬虫逆向担忧了!
版权说明:本文禁止抄袭、转载,侵权必究! 目录 一、简介+使用场景二、环境部署(准备)三、代码生成器(优势)四、元素定位器(核心)五、追踪查看器(辅助)六、权限控制与认证(高级)七、其他重要功能(进阶)八、作者Info一、简介+使用场景 Playwright是什么?来自Chat…...
为什么 conda 不能升级 python 到 3.12
为什么 conda 不能升级 python 到 3.12 2023-11-05 23:33:29 ChrisZZ 1. 目的 弄清楚为什么执行了如下升级命令后, python 版本还是 3.11? conda update conda conda update python2. 原因 因为 conda forge 没有完成 migration Migration is the …...
0X02
web9 阐释一波密码,依然没有什么 发现,要不扫一下,或者看一看可不可以去爆破密码 就先扫了看看,发现robots.txt 访问看看,出现不允许被访问的目录 还是继续尝试访问看看 就可以下载源码,看看源码 <?php $fl…...
【手写数据库所需C语言基础】可变结构体,结构体成员计算,类型强制转换为统一类型,数据库中使用C语言方法和技巧
专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会定期更新,…...
Android Studio(适配器Adapter)
认识适配器 在学完并且在做了一个自主项目后,我对适配器有了以下认识:1. 适配器的作用: 数据驱动的动态页面列表渲染,所以适配器主要就做了两件事:遍历数据,渲染页面(列表项)。比…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
