当前位置: 首页 > news >正文

0-1矩阵列互斥问题——回溯法 Python实现

三、 0-1 矩阵的列集互斥问题。给定一个 m × n m \times n m×n 的 0-1 矩阵 A \mathrm{A} A 。定义列互斥为: 对于矩阵 A A A 中的任意两列 i i i j j j, 如果在对应的每一行上, i i i j j j 不存在同时为 1 的情况, 则称列 i \mathrm{i} i j \mathrm{j} j 互斥。定义列集互斥为: 设 S 1 \mathrm{S} 1 S1 S 2 \mathrm{S} 2 S2 为矩阵 A \mathrm{A} A 中的列的集合, S 1 S1 S1 S 2 S2 S2 之间没有交集 (即, 不允许 A \mathrm{A} A 中的某列既属于 S 1 \mathrm{S} 1 S1 又属于 S 2 \mathrm{S} 2 S2 ), 如果在对应的每一行上, S 1 \mathrm{S} 1 S1 中的任意一列和 S 2 \mathrm{S} 2 S2 中的任意一列不存在同时为 1 的情况, 则称列集 S 1 \mathrm{S} 1 S1 S 2 S2 S2 互斥。设计一个算法, 求出 A \mathrm{A} A 上的一组 S 1 \mathrm{S} 1 S1 S 2 \mathrm{S} 2 S2 ,使得 S 1 \mathrm{S} 1 S1 S 2 \mathrm{S} 2 S2 包含的列的个数为最多

S 1 S1 S1 S 2 S2 S2非空。

思路
在这里插入图片描述
适当的利用剪枝函数限界函数以减少搜索的空间:

  • 剪枝函数:即题目要求,只有互斥才能进入下一层。
  • 限界函数:目前A和B矩阵的列数加上剩余的列数已经小于当前最优解,放弃向下搜索。

使用Py编写这个算法的时候,可以使用numpy库的数据,加快我们运行的速度,同时可以减少很多循环遍历数组的冗余代码。

为了节省时间,我们在开始计算前,先把 n n n列向量的互斥关系都计算出来,保存在一个 n × n n \times n n×n的矩阵内。

import numpy as np
import matplotlib.pyplot as pltclass Matrix:def __init__(self, array):self.array = arrayrows, columns = array.shapeself.belong = np.zeros(columns, dtype=int)  # 1属于A, 2属于Bself.solve = np.zeros(columns, dtype=int)   # 最终解self.best = 0  # 最佳列数self.sumA = 0  # 记录当前A列数self.sumB = 0  # 记录当前B列数self.judge = np.ones((columns, columns), dtype=int)  # 减少时间的关键,判断两列互斥self.diff = 9999# 先计算出列与列之间的互斥关系1代表不互斥,0代表互斥for i in range(columns):self.judge[i, i] = 0for j in range(i):for k in range(rows):if array[k, i] == 1 and array[k, j] == 1:self.judge[i, j] = 0self.judge[j, i] = 0break# j列能否归入Adef could_be_a(self, j):for i in range(j):if self.belong[i] == 2 and self.judge[i, j] == 0:return Falsereturn True# j列能否归入Bdef could_be_b(self, j):for i in range(j):if self.belong[i] == 1 and self.judge[i, j] == 0:return Falsereturn Truedef biggest_divide(self, i):columns = self.array.shape[1]if i >= columns:if self.sumA + self.sumB > self.best and self.sumA and self.sumB and np.abs(self.sumA-self.sumB) < self.diff:self.best = self.sumA + self.sumBself.solve = self.belong.copy()self.diff = np.abs(self.sumA-self.sumB)returnif self.could_be_a(i):self.belong[i] = 1self.sumA += 1self.biggest_divide(i + 1)self.belong[i] = 0self.sumA -= 1if self.could_be_b(i):self.belong[i] = 2self.sumB += 1self.biggest_divide(i + 1)self.belong[i] = 0self.sumB -= 1if self.sumA + self.sumB + columns - i >= self.best:self.biggest_divide(i + 1)def show(self):a_indices = np.where(self.solve == 1)[0]b_indices = np.where(self.solve == 2)[0]print("A:", a_indices)print("B:", b_indices)color_array = self.array.copy()color_array[:, a_indices] *= 10color_array[:, b_indices] *= 7plt.matshow(color_array, cmap=plt.cm.Reds)plt.show()row = 50
colume = 20
array = np.random.choice([0, 1], size=(row, colume), p=[0.8, 0.2])
test = Matrix(array)
test.biggest_divide(0)
test.show()

使用show来可视化最终结果,如果这里只取列数合最大,一般A列都比较多,如果要好看的结果可以限制A列和B列之间距离越小越好,多设置一个diff参数,当列数合相同时,保存A列与B列相差较小的结果。

m m m=50, n n n=20下,1填充率为20%,随机填充下的互斥结果,深红色为A集合,鲜红色为B集合。

A: [ 0 5 16 17 19]
B: [ 2 7]

在这里插入图片描述

时间复杂度分析

  1. 对于每一列,回溯算法会考虑三种可能性:将其归入 A 部分或归入 B 部分或者不归入。
  2. 对于每一列的三种可能性,又会递归考虑下一列的三种可能性,以此类推。
  3. 这样的递归结构导致了指数级的搜索树。
  4. 在最坏情况下,需要考虑的列数等于矩阵的列数,因此有 3 n 3^n 3n种可能性,其中 n n n 是列数。

相关文章:

0-1矩阵列互斥问题——回溯法 Python实现

三、 0-1 矩阵的列集互斥问题。给定一个 m n m \times n mn 的 0-1 矩阵 A \mathrm{A} A 。定义列互斥为: 对于矩阵 A A A 中的任意两列 i i i 和 j j j, 如果在对应的每一行上, i i i 和 j j j 不存在同时为 1 的情况, 则称列 i \mathrm{i} i 和 j \mathrm{j} j 互斥…...

wandb 安装本地部署使用教程

1、官网注册 wandb.ai是一个为机器学习开发者提供的开发工具平台&#xff0c;可以帮助用户跟踪实验&#xff0c;管理和版本数据&#xff0c;以及与团队协作&#xff0c;从而更专注于构建最佳模型。 wandb官网&#xff1a; https://wandb.ai 首先我们打开官网注册号自己的账号并…...

飞桨平台搭建PP-YOLOE模型

一、创建项目 此博客仅是运行PP-YOLOE源码&#xff0c;这里以变压器渗漏数据集为例COCO数据集太大了&#xff0c;跑不动&#xff0c;V100训练预估计得7天左右&#xff0c;即便是A100也得4天半&#xff0c;变压器渗漏油数据集跑一个小时左右&#xff0c;还可以接受&#xff0c;…...

Js重点内容

一&#xff0c;什么是js javascript是运行在客户端&#xff08;浏览器&#xff0c;可预览&#xff09;的编程语言 二&#xff0c;主要的功能 用来给静态页&#xff08;html网页&#xff09;增加一些动态功能&#xff08;比如轮播图、tab切换&#xff09; 三&#xff0c;应用…...

图形化ping工具gping

一、介绍 gping能够以折线图的方式&#xff0c;实时展示 ping 的结果&#xff0c;支持 Windows、Linux 和 macOS 操作系统。并且支持多个目标同时Ping同时展示折线图方便对比。下面扩展一下ICMP及ICMP隧道。 ICMP消息结构&#xff1a; ICMP消息是由一个类型字段、一个代码字段、…...

快速安装虚拟机centos7.5

vbox 快速导入安装centos7.5 环境准备 vbox安装&#xff08;下载地址&#xff09; ova镜像&#xff08;下载地址&#xff09;&#xff08;默认是192.168.56.10 加nat网卡&#xff09; 链接&#xff1a;https://pan.baidu.com/s/164Iprh_80HCQmKCU6V-RTw 提取码&#xff1a;if…...

2023.11.4 Idea 配置国内 Maven 源

目录 配置国内 Maven 源 重新下载 jar 包 配置国内 Maven 源 <mirror><id>alimaven</id><name>aliyun maven</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url><mirrorOf>central</mirrorOf> …...

DAY11 字符串处理函数

1.测字符串长度函数 头文件&#xff1a; #include <string.h> 函数定义&#xff1a; size_t strlen(const char *s); 函数功能&#xff1a; 测字符指针 s 指向的字符串中字符的个数&#xff0c;不包括 ’\0’ void fun01() {char *num "hello";int len …...

Web自动化测试 —— PageObject设计模式!

一、page object 模式简介 1.1、传统 UI 自动化的问题 无法适应 UI 频繁变化无法清晰表达业务用例场景大量的样板代码 driver/find/click 二、page object 设计原则 2.1、POM 模式的优势 降低 UI 变化导致的测试用例脆弱性问题让用例清晰明朗&#xff0c;与具体实现无关 2.…...

七月论文审稿GPT第2版:从Meta Nougat、GPT4审稿到Mistral、LongLora

前言 如此前这篇文章《学术论文GPT的源码解读与微调&#xff1a;从chatpaper、gpt_academic到七月论文审稿GPT》中的第三部分所述&#xff0c;对于论文的摘要/总结、对话、翻译、语法检查而言&#xff0c;市面上的学术论文GPT的效果虽暂未有多好&#xff0c;可至少还过得去&am…...

Unreal Engine 学习笔记 (1)—— 日夜交替

1.创建关卡 文件新建关卡空白关卡保存关卡&#xff08;命名为NewWorld&#xff09; 2.创建蓝图类 创建蓝图类&#xff08;继承自Actor&#xff09; 命名为SunAndMoon 3.编辑SunAndMoon蓝图类 添加SkyAtmosphere添加SkyLight添加DirectionalLight将DirectionalLight重命名为…...

leetcode:189. 轮转数组(python3解法)

难度&#xff1a;中等 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4]解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3…...

基于PHP + MySQL实现的文章内容管理系统源码+数据库,采用前后端分离的模板和标签化方式

文章内容管理系统 dc-article是一个通用的文章内容管理系统&#xff0c;基于开源的caozha-admin开发&#xff0c;采用前后端分离的模板和标签化方式&#xff0c;支持文章内容管理、栏目分类管理、评论管理、友情链接管理、碎片管理、远程图片获取器等功能。可以使用本系统很轻…...

这可能是全网最晚的低代码技术总结

低代码的发展一向结伴着质疑前行&#xff0c;一些人认为低代码平台限制了开发人员的创新能力&#xff0c;使得开发过程变得过于简单&#xff0c;缺乏深度的定制和灵活性。他们担心&#xff0c;低代码平台可能只适合于简单的应用程序&#xff0c;无法满足复杂业务需求。另一面&a…...

leetcode2054

leetcode 2054 #include <iostream> #include <vector> #include <tuple> #include <algorithm>using namespace std;struct Event {// 时间戳int ts;// op 0 表示左边界&#xff0c;op 1 表示右边界int op;int val;Event(int _ts, int _op, int _v…...

c面向对象编码风格(上)

面向对象和面向过程的基本概念 面向对象和面向过程是两种不同的编程范式&#xff0c;它们在软件开发中用于组织和设计代码的方式。 面向过程编程&#xff08;Procedural Programming&#xff09;是一种以过程&#xff08;函数、方法&#xff09;为核心的编程方式。在面向过程…...

【星海出品】VUE(六)

插槽Slots 传递属性 attribute App,vue <script> import SlotsBase from "./components/SlotsBase.vue" import SlotsTow from "./components/SlotsTow.vue" export default {components:{SlotsBase,SlotsTow},data(){return{message: "父集 m…...

华为政企闪存存储产品集

产品类型产品型号产品说明 maintainProductOceanStor Dorado 2000 SAS 128GB华为OceanStor Dorado 2000是一款简单、可靠、绿色的全闪存存储系统&#xff0c;极简部署、智能运维、轻量便捷&#xff0c;功能齐全&#xff0c;广泛适用于虚拟化、数据库、办公自动化、分支机构等…...

【项目源码】反编译Java字节码生成源码

【项目源码】反编译Java字节码生成源码 文章目录 【项目源码】反编译Java字节码生成源码参考资料一、什么是反编译&#xff1f;二、反编译Java字节码文件1. &#xff08;不一定有效&#xff09; 使用IDEA提供的插件 - Java Bytecode Decomplier2. &#xff08;推荐&#xff09;…...

技术分享 | 测试人员必须掌握的测试用例

测试用例&#xff08;Test Case&#xff09;是为特定的目的而设计的一组测试输入、执行条件和预期结果的文档。它的作用其实就是为了测试是否满足某个特定需求。测试用例是指导测试工作进行的依据。 测试用例的组成 标准的测试用例通常由以下几个模块组成&#xff1a; 用例编…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...

信息系统分析与设计复习

2024试卷 单选题&#xff08;20&#xff09; 1、在一个聊天系统(类似ChatGPT)中&#xff0c;属于控制类的是&#xff08;&#xff09;。 A. 话语者类 B.聊天文字输入界面类 C. 聊天主题辨别类 D. 聊天历史类 ​解析 B-C-E备选架构中分析类分为边界类、控制类和实体类。 边界…...

【中间件】Web服务、消息队列、缓存与微服务治理:Nginx、Kafka、Redis、Nacos 详解

Nginx 是什么&#xff1a;高性能的HTTP和反向代理Web服务器。怎么用&#xff1a;通过配置文件定义代理规则、负载均衡、静态资源服务等。为什么用&#xff1a;提升Web服务性能、高并发处理、负载均衡和反向代理。优缺点&#xff1a;轻量高效&#xff0c;但动态处理能力较弱&am…...