当前位置: 首页 > news >正文

0-1矩阵列互斥问题——回溯法 Python实现

三、 0-1 矩阵的列集互斥问题。给定一个 m × n m \times n m×n 的 0-1 矩阵 A \mathrm{A} A 。定义列互斥为: 对于矩阵 A A A 中的任意两列 i i i j j j, 如果在对应的每一行上, i i i j j j 不存在同时为 1 的情况, 则称列 i \mathrm{i} i j \mathrm{j} j 互斥。定义列集互斥为: 设 S 1 \mathrm{S} 1 S1 S 2 \mathrm{S} 2 S2 为矩阵 A \mathrm{A} A 中的列的集合, S 1 S1 S1 S 2 S2 S2 之间没有交集 (即, 不允许 A \mathrm{A} A 中的某列既属于 S 1 \mathrm{S} 1 S1 又属于 S 2 \mathrm{S} 2 S2 ), 如果在对应的每一行上, S 1 \mathrm{S} 1 S1 中的任意一列和 S 2 \mathrm{S} 2 S2 中的任意一列不存在同时为 1 的情况, 则称列集 S 1 \mathrm{S} 1 S1 S 2 S2 S2 互斥。设计一个算法, 求出 A \mathrm{A} A 上的一组 S 1 \mathrm{S} 1 S1 S 2 \mathrm{S} 2 S2 ,使得 S 1 \mathrm{S} 1 S1 S 2 \mathrm{S} 2 S2 包含的列的个数为最多

S 1 S1 S1 S 2 S2 S2非空。

思路
在这里插入图片描述
适当的利用剪枝函数限界函数以减少搜索的空间:

  • 剪枝函数:即题目要求,只有互斥才能进入下一层。
  • 限界函数:目前A和B矩阵的列数加上剩余的列数已经小于当前最优解,放弃向下搜索。

使用Py编写这个算法的时候,可以使用numpy库的数据,加快我们运行的速度,同时可以减少很多循环遍历数组的冗余代码。

为了节省时间,我们在开始计算前,先把 n n n列向量的互斥关系都计算出来,保存在一个 n × n n \times n n×n的矩阵内。

import numpy as np
import matplotlib.pyplot as pltclass Matrix:def __init__(self, array):self.array = arrayrows, columns = array.shapeself.belong = np.zeros(columns, dtype=int)  # 1属于A, 2属于Bself.solve = np.zeros(columns, dtype=int)   # 最终解self.best = 0  # 最佳列数self.sumA = 0  # 记录当前A列数self.sumB = 0  # 记录当前B列数self.judge = np.ones((columns, columns), dtype=int)  # 减少时间的关键,判断两列互斥self.diff = 9999# 先计算出列与列之间的互斥关系1代表不互斥,0代表互斥for i in range(columns):self.judge[i, i] = 0for j in range(i):for k in range(rows):if array[k, i] == 1 and array[k, j] == 1:self.judge[i, j] = 0self.judge[j, i] = 0break# j列能否归入Adef could_be_a(self, j):for i in range(j):if self.belong[i] == 2 and self.judge[i, j] == 0:return Falsereturn True# j列能否归入Bdef could_be_b(self, j):for i in range(j):if self.belong[i] == 1 and self.judge[i, j] == 0:return Falsereturn Truedef biggest_divide(self, i):columns = self.array.shape[1]if i >= columns:if self.sumA + self.sumB > self.best and self.sumA and self.sumB and np.abs(self.sumA-self.sumB) < self.diff:self.best = self.sumA + self.sumBself.solve = self.belong.copy()self.diff = np.abs(self.sumA-self.sumB)returnif self.could_be_a(i):self.belong[i] = 1self.sumA += 1self.biggest_divide(i + 1)self.belong[i] = 0self.sumA -= 1if self.could_be_b(i):self.belong[i] = 2self.sumB += 1self.biggest_divide(i + 1)self.belong[i] = 0self.sumB -= 1if self.sumA + self.sumB + columns - i >= self.best:self.biggest_divide(i + 1)def show(self):a_indices = np.where(self.solve == 1)[0]b_indices = np.where(self.solve == 2)[0]print("A:", a_indices)print("B:", b_indices)color_array = self.array.copy()color_array[:, a_indices] *= 10color_array[:, b_indices] *= 7plt.matshow(color_array, cmap=plt.cm.Reds)plt.show()row = 50
colume = 20
array = np.random.choice([0, 1], size=(row, colume), p=[0.8, 0.2])
test = Matrix(array)
test.biggest_divide(0)
test.show()

使用show来可视化最终结果,如果这里只取列数合最大,一般A列都比较多,如果要好看的结果可以限制A列和B列之间距离越小越好,多设置一个diff参数,当列数合相同时,保存A列与B列相差较小的结果。

m m m=50, n n n=20下,1填充率为20%,随机填充下的互斥结果,深红色为A集合,鲜红色为B集合。

A: [ 0 5 16 17 19]
B: [ 2 7]

在这里插入图片描述

时间复杂度分析

  1. 对于每一列,回溯算法会考虑三种可能性:将其归入 A 部分或归入 B 部分或者不归入。
  2. 对于每一列的三种可能性,又会递归考虑下一列的三种可能性,以此类推。
  3. 这样的递归结构导致了指数级的搜索树。
  4. 在最坏情况下,需要考虑的列数等于矩阵的列数,因此有 3 n 3^n 3n种可能性,其中 n n n 是列数。

相关文章:

0-1矩阵列互斥问题——回溯法 Python实现

三、 0-1 矩阵的列集互斥问题。给定一个 m n m \times n mn 的 0-1 矩阵 A \mathrm{A} A 。定义列互斥为: 对于矩阵 A A A 中的任意两列 i i i 和 j j j, 如果在对应的每一行上, i i i 和 j j j 不存在同时为 1 的情况, 则称列 i \mathrm{i} i 和 j \mathrm{j} j 互斥…...

wandb 安装本地部署使用教程

1、官网注册 wandb.ai是一个为机器学习开发者提供的开发工具平台&#xff0c;可以帮助用户跟踪实验&#xff0c;管理和版本数据&#xff0c;以及与团队协作&#xff0c;从而更专注于构建最佳模型。 wandb官网&#xff1a; https://wandb.ai 首先我们打开官网注册号自己的账号并…...

飞桨平台搭建PP-YOLOE模型

一、创建项目 此博客仅是运行PP-YOLOE源码&#xff0c;这里以变压器渗漏数据集为例COCO数据集太大了&#xff0c;跑不动&#xff0c;V100训练预估计得7天左右&#xff0c;即便是A100也得4天半&#xff0c;变压器渗漏油数据集跑一个小时左右&#xff0c;还可以接受&#xff0c;…...

Js重点内容

一&#xff0c;什么是js javascript是运行在客户端&#xff08;浏览器&#xff0c;可预览&#xff09;的编程语言 二&#xff0c;主要的功能 用来给静态页&#xff08;html网页&#xff09;增加一些动态功能&#xff08;比如轮播图、tab切换&#xff09; 三&#xff0c;应用…...

图形化ping工具gping

一、介绍 gping能够以折线图的方式&#xff0c;实时展示 ping 的结果&#xff0c;支持 Windows、Linux 和 macOS 操作系统。并且支持多个目标同时Ping同时展示折线图方便对比。下面扩展一下ICMP及ICMP隧道。 ICMP消息结构&#xff1a; ICMP消息是由一个类型字段、一个代码字段、…...

快速安装虚拟机centos7.5

vbox 快速导入安装centos7.5 环境准备 vbox安装&#xff08;下载地址&#xff09; ova镜像&#xff08;下载地址&#xff09;&#xff08;默认是192.168.56.10 加nat网卡&#xff09; 链接&#xff1a;https://pan.baidu.com/s/164Iprh_80HCQmKCU6V-RTw 提取码&#xff1a;if…...

2023.11.4 Idea 配置国内 Maven 源

目录 配置国内 Maven 源 重新下载 jar 包 配置国内 Maven 源 <mirror><id>alimaven</id><name>aliyun maven</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url><mirrorOf>central</mirrorOf> …...

DAY11 字符串处理函数

1.测字符串长度函数 头文件&#xff1a; #include <string.h> 函数定义&#xff1a; size_t strlen(const char *s); 函数功能&#xff1a; 测字符指针 s 指向的字符串中字符的个数&#xff0c;不包括 ’\0’ void fun01() {char *num "hello";int len …...

Web自动化测试 —— PageObject设计模式!

一、page object 模式简介 1.1、传统 UI 自动化的问题 无法适应 UI 频繁变化无法清晰表达业务用例场景大量的样板代码 driver/find/click 二、page object 设计原则 2.1、POM 模式的优势 降低 UI 变化导致的测试用例脆弱性问题让用例清晰明朗&#xff0c;与具体实现无关 2.…...

七月论文审稿GPT第2版:从Meta Nougat、GPT4审稿到Mistral、LongLora

前言 如此前这篇文章《学术论文GPT的源码解读与微调&#xff1a;从chatpaper、gpt_academic到七月论文审稿GPT》中的第三部分所述&#xff0c;对于论文的摘要/总结、对话、翻译、语法检查而言&#xff0c;市面上的学术论文GPT的效果虽暂未有多好&#xff0c;可至少还过得去&am…...

Unreal Engine 学习笔记 (1)—— 日夜交替

1.创建关卡 文件新建关卡空白关卡保存关卡&#xff08;命名为NewWorld&#xff09; 2.创建蓝图类 创建蓝图类&#xff08;继承自Actor&#xff09; 命名为SunAndMoon 3.编辑SunAndMoon蓝图类 添加SkyAtmosphere添加SkyLight添加DirectionalLight将DirectionalLight重命名为…...

leetcode:189. 轮转数组(python3解法)

难度&#xff1a;中等 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4]解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3…...

基于PHP + MySQL实现的文章内容管理系统源码+数据库,采用前后端分离的模板和标签化方式

文章内容管理系统 dc-article是一个通用的文章内容管理系统&#xff0c;基于开源的caozha-admin开发&#xff0c;采用前后端分离的模板和标签化方式&#xff0c;支持文章内容管理、栏目分类管理、评论管理、友情链接管理、碎片管理、远程图片获取器等功能。可以使用本系统很轻…...

这可能是全网最晚的低代码技术总结

低代码的发展一向结伴着质疑前行&#xff0c;一些人认为低代码平台限制了开发人员的创新能力&#xff0c;使得开发过程变得过于简单&#xff0c;缺乏深度的定制和灵活性。他们担心&#xff0c;低代码平台可能只适合于简单的应用程序&#xff0c;无法满足复杂业务需求。另一面&a…...

leetcode2054

leetcode 2054 #include <iostream> #include <vector> #include <tuple> #include <algorithm>using namespace std;struct Event {// 时间戳int ts;// op 0 表示左边界&#xff0c;op 1 表示右边界int op;int val;Event(int _ts, int _op, int _v…...

c面向对象编码风格(上)

面向对象和面向过程的基本概念 面向对象和面向过程是两种不同的编程范式&#xff0c;它们在软件开发中用于组织和设计代码的方式。 面向过程编程&#xff08;Procedural Programming&#xff09;是一种以过程&#xff08;函数、方法&#xff09;为核心的编程方式。在面向过程…...

【星海出品】VUE(六)

插槽Slots 传递属性 attribute App,vue <script> import SlotsBase from "./components/SlotsBase.vue" import SlotsTow from "./components/SlotsTow.vue" export default {components:{SlotsBase,SlotsTow},data(){return{message: "父集 m…...

华为政企闪存存储产品集

产品类型产品型号产品说明 maintainProductOceanStor Dorado 2000 SAS 128GB华为OceanStor Dorado 2000是一款简单、可靠、绿色的全闪存存储系统&#xff0c;极简部署、智能运维、轻量便捷&#xff0c;功能齐全&#xff0c;广泛适用于虚拟化、数据库、办公自动化、分支机构等…...

【项目源码】反编译Java字节码生成源码

【项目源码】反编译Java字节码生成源码 文章目录 【项目源码】反编译Java字节码生成源码参考资料一、什么是反编译&#xff1f;二、反编译Java字节码文件1. &#xff08;不一定有效&#xff09; 使用IDEA提供的插件 - Java Bytecode Decomplier2. &#xff08;推荐&#xff09;…...

技术分享 | 测试人员必须掌握的测试用例

测试用例&#xff08;Test Case&#xff09;是为特定的目的而设计的一组测试输入、执行条件和预期结果的文档。它的作用其实就是为了测试是否满足某个特定需求。测试用例是指导测试工作进行的依据。 测试用例的组成 标准的测试用例通常由以下几个模块组成&#xff1a; 用例编…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...