R 复习 菜鸟教程
R语言老师说R好就业,学就完了
基础语法
cat()可以拼接函数:
> cat(1, "加", 1, "等于", 2, '\n')
1 加 1 等于 2
sink():重定向
sink("r_test.txt", split=TRUE) # 控制台同样输出
for (i in 1:5) print(i)
sink() # 取消输出到文件sink("r_test.txt", append=TRUE) # 控制台不输出,追加写入文件
print("RUNOOB")
# 当前工作目录
print(getwd())# 设置当前工作目录
setwd("/Users/runoob/runoob-test2")# 查看当前工作目录
print(getwd())
基础运算
%% 整除求余
%/% 整除
%in% 用于判断元素是否在向量里,返回布尔值,有的话返回 TRUE,没有返回 FALSE。
%*% 用于矩阵与它转置的矩阵相乘。# 1 到 10 的向量
v <- 1:10
print(v) # 判断数字是否在向量 v 中
v1 <- 3
v2 <- 15
print(v1 %in% v)
print(v2 %in% v) # 矩阵与它转置的矩阵相乘
M = matrix( c(2,6,5,1,10,4), nrow = 2,ncol = 3,byrow = TRUE)
t = M %*% t(M)
print(t)
数据类型
变量按对象类型来分是以下 6 种:
向量(vector)
列表(list)
矩阵(matrix)
数组(array)
因子(factor)
数据框(data.frame)
seq(data,from,to,len):等差数列
rep():重复
NA:占位符
> toupper("Runoob") # 转换为大写
[1] "RUNOOB"
> tolower("Runoob") # 转换为小写
[1] "runoob"
> nchar("中文", type="bytes") # 统计字节长度
[1] 4
> nchar("中文", type="char") # 总计字符数量
[1] 2
> substr("123456789", 1, 5) # 截取字符串,从 1 到 5
[1] "12345"
> substring("1234567890", 5) # 截取字符串,从 5 到结束
[1] "567890"
> as.numeric("12") # 将字符串转换为数字
[1] 12
> as.character(12.34) # 将数字转换为字符串
[1] "12.34"
> strsplit("2019;10;1", ";") # 分隔符拆分字符串
[[1]]
[1] "2019" "10" "1"
> gsub("/", "-", "2019/10/1") # 替换字符串
[1] "2019-10-1"
> (A = matrix(c(1, 3, 2, 4), 2, 2))[,1] [,2]
[1,] 1 2
[2,] 3 4
> apply(A, 1, sum) # 第二个参数为 1 按行操作,用 sum() 函数
[1] 3 7
> apply(A, 2, sum) # 第二个参数为 2 按列操作
[1] 4 6
判断语句
R 语言提供了以下类型的判断语句:
if 语句
if…else 语句
switch 语句
switch 没有默认参数可用。
循环
R 语言提供的循环类型有:
repeat 循环 用 break
测试+ while 循环
for 循环 +测试
R 语言提供的循环控制语句有:
break 语句
Next 语句 用于 switch
函数
function_name <- function(arg_1, arg_2, ...) {# 函数体# 执行的代码块return(output)
}
str():显示对象的结构和内容摘要
字符串
paste(..., sep = " ", collapse = NULL):合并字符串a <- "Google"
b <- 'Runoob'
c <- "Taobao"print(paste(a,b,c))print(paste(a,b,c, sep = "-"))print(paste(letters[1:6],1:6, sep = "", collapse = "="))
paste(letters[1:6],1:6, collapse = ".")输出结果:
[1] "Google Runoob Taobao"
[1] "Google-Runoob-Taobao"
[1] "a1=b2=c3=d4=e5=f6"
[1] "a 1.b 2.c 3.d 4.e 5.f 6"
列表
list_data <- list("runoob", "google", c(11,22,33), 123, 51.23, 119.1)
print(list_data)输出结果:
[[1]]
[1] "runoob"[[2]]
[1] "google"[[3]]
[1] 11 22 33[[4]]
[1] 123[[5]]
[1] 51.23[[6]]
[1] 119.1
# 列表包含向量、矩阵、列表
list_data <- list(c("Google","Runoob","Taobao"), matrix(c(1,2,3,4,5,6), nrow = 2),list("runoob",12.3))# 给列表元素设置名字
names(list_data) <- c("Sites", "Numbers", "Lists")# 显示列表
print(list_data)输出结果:
$Sites
[1] "Google" "Runoob" "Taobao"$Numbers[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6$Lists
$Lists[[1]]
[1] "runoob"$Lists[[2]]
[1] 12.3
# 列表包含向量、矩阵、列表
list_data <- list(c("Google","Runoob","Taobao"), matrix(c(1,2,3,4,5,6), nrow = 2),list("runoob",12.3))# 给列表元素设置名字
names(list_data) <- c("Sites", "Numbers", "Lists")# 添加元素
list_data[4] <- "新元素"
print(list_data[4])# 删除元素
list_data[4] <- NULL# 删除后输出为 NULL
print(list_data[4])# 更新元素
list_data[3] <- "我替换来第三个元素"
print(list_data[3])
# 创建两个列表
list1 <- list(1,2,3)
list2 <- list("Google","Runoob","Taobao")# 合并列表
merged.list <- c(list1,list2)# 显示合并后的列表
print(merged.list)
# 创建列表
list1 <- list(1:5)
print(list1)list2 <-list(10:14)
print(list2)# 转换为向量
v1 <- unlist(list1)
v2 <- unlist(list2)print(v1)
print(v2)# 两个向量相加
result <- v1+v2
print(result)
矩阵
matrix(data = , nrow = , ncol = , byrow = FALSE,dimnames = NULL)data 向量,矩阵的数据
nrow 行数
ncol 列数
byrow 逻辑值,为 FALSE 按列排列,为 TRUE 按行排列
dimname 设置行和列的名称# byrow 为 TRUE 元素按行排列
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print(M)# Ebyrow 为 FALSE 元素按列排列
N <- matrix(c(3:14), nrow = 4, byrow = FALSE)
print(N)# 定义行和列的名称
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
print(P)
数组
array(data = NA, dim = length(data), dimnames = NULL)data - 指定数组的数据源,可以是一个向量、矩阵或列表。
dim - 指定数组的维度,可以是一个整数向量或一个表示维度的元组,默认是一维数组。例如,dim = c(2, 3, 4) 表示创建一个 2x3x4 的三维数组。
dimnames - 可选参数,用于指定数组每个维度的名称,可以是一个包含维度名称的列表。
apply(X, MARGIN, FUN, ...)X:要应用函数的数组或矩阵。
MARGIN:指定应用函数的维度,可以是1表示行,2表示列,或者c(1, 2)表示同时应用于行和列。
FUN:要应用的函数,可以是内置函数(如mean、sum等)或自定义函数。# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)# 创建数组
new.array <- array(c(vector1,vector2),dim = c(3,3,2))
print(new.array)# 计算数组中所有矩阵第一行的数字之和
result <- apply(new.array, c(1), sum)
print(result)
数据重塑
cast():函数用于对合并对数据框进行还原
dcast():返回数据框
acast():返回一个向量/矩阵/数组。
包
.libPaths():查看 R 包的安装目录
library():查看已安装的包
install.packages(“要安装的包名”)
读取文件
data <- read.csv("sites.csv", encoding="UTF-8")# likes 为 222 的数据
retval <- subset(data, likes == 222)# 写入新的文件
write.csv(retval,"runoob.csv")
newdata <- read.csv("runoob.csv")
print(newdata)
summary():获取关系模型的概要
predict(object, newdata)object - lm() 函数创建的公式。
newdata - 要预测的值。
实例
通过自定义一个函数来查找向量中重复次数最多的元素# 创建向量
getmode <- function(v) {uniqv <- unique(v)uniqv[which.max(tabulate(match(v, uniqv)))]
}# 数字向量
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)# 计算结果
result <- getmode(v)
print(result)# 字符串向量
charv <- c("google","runoob","taobao","runoob","runoob")# 计算结果
result <- getmode(charv)
print(result)
# 创建向量
x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
# 计算平均值
result.mean <- mean(x,trim = 0.3)//去掉首尾各 3 个元素
result.mean2 <- mean(c(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17))
print(result.mean)
print(result.mean2)
总结
我知道的和我觉得不是重点的我就没写,建议搭配前面两篇文章和课本一块使用
相关文章:
R 复习 菜鸟教程
R语言老师说R好就业,学就完了 基础语法 cat()可以拼接函数: > cat(1, "加", 1, "等于", 2, \n) 1 加 1 等于 2sink():重定向 sink("r_test.txt", splitTRUE) # 控制台同样输出 for (i in 1:5) print(i…...
第十二章《搞懂算法:朴素贝叶斯是怎么回事》笔记
朴素贝叶斯是经典的机器学习算法,也是统计模型中的一个基本方法。它的基本思想是利用统计学中的条件概率来进行分类。它是一种有监督学习算法,其中“朴素”是指该算法基于样本特征之间相互独立这个“朴素”假设。朴素贝叶斯原理简单、容易实现࿰…...
【从0到1开发一个网关】网关Mock功能的实现
文章目录 什么是Mock?如何实现Mock什么是Mock? Mock(模拟)是一种测试技术,用于创建虚拟对象来模拟真实对象的行为。Mock对象模拟了真实对象的行为,但是不依赖于真实对象的实现细节。它们可以在测试中替代真实对象,以便进行独立的单元测试。 需要使用Mock的原因包括以下几…...

前端框架Vue学习 ——(三)Vue生命周期
生命周期:指一个对象从创建到销毁的整个过程。 生命周期的八个阶段:每触发一个生命周期事件,会自动执行一个生命周期方法(钩子) mounted:挂载完成,Vue 初始化成功,HTML 页面渲染成功…...

相机滤镜软件Nevercenter CameraBag Photo mac中文版特点介绍
Nevercenter CameraBag Photo mac是一款相机和滤镜应用程序,它提供了一系列先进的滤镜、调整工具和预设,可以帮助用户快速地优化和编辑照片。 Nevercenter CameraBag Photo mac软件特点介绍 1. 滤镜:Nevercenter CameraBag Photo提供了超过2…...
游戏专用....
游戏专用:星际战甲 APP窗口以及键鼠监控 import tkinter as tk import time,threading from pynput.keyboard import Key,Listener import pynput.keyboard as kbclass myClass:def __init__(self):self.root tk.Tk()self.new_text self.flag threading.Event()…...
第三方登录和第三方支付
第三方登录 在现代Web应用中,提供第三方登录选项已经变得非常普遍。用户可以使用其社交媒体或其他在线帐户(如Google、GitHub或Facebook)来访问您的应用程序,而无需创建新的用户名和密码。这提供了更好的用户体验,减少…...

SpringMvc执行流程(含过滤器Filter+拦截器interceptor)
目录 1.Mvc的概念 2.SpringMvc的概念 3.SpringMvc的核心组件 4.SpringMvc的执行流程 5.SpringMvcFilterInterceptor执行流程 一、Mvc的概念 Mvc(Model View Controller):Mvc是一种设计规范,它将数据、视图、业务逻辑代码进行分离,降低代码…...

【UDS基础】简单介绍“统一诊断服务“
1. 前言 我们将在这个实用教程中介绍UDS的基础知识,重点关注在CAN总线上的UDS(UDSonCAN)和CAN诊断(DoCAN)。此外,我们还会介绍ISO-TP协议,并解释UDS、OBD2、WWH-OBD和OBDonUDS之间的差异。 最后,我们将解释如何请求、记录和解码UDS消息,并提供一些实际示例,例如记录…...

深度学习框架TensorFlow.NET之数据类型及张量2(C#)
环境搭建参考: 深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客 由于本文作者水平有限,如有写得不对的地方,往指出 声明变量:tf.Variable 声明常量:tf.constant 下面通过代码的方式进行学…...
Pandas指定多列组合形成新列
目录 1、数据准备2、多列组合 1、数据准备 df pd.DataFrame({first_name: [A, B], last_name: [a, b]}) print(df.to_string()) first_name last_name 0 A a 1 B b 2、多列组合 2.1、方式一:使用cat() df[full_name] df[firs…...

硕鼠——视频下载利器
相信很多做自媒体、剪辑的同志们,经常会遇到一个棘手的问题:剪辑的素材从何而来。诸如很多高燃混剪的视频,往往需要多个影视作品中的原画来进行二次创作,可是这些视频素材从何而来呢? 有小伙伴们提出,通过录…...

Android 13.0 Launcher3 app图标长按去掉应用信息按钮
1.前言 在13.0的rom定制化开发中,在Launcher3定制化开发中,对Launcher3的定制化功能中,在Launcher3的app列表页会在长按时,弹出微件和应用信息两个按钮,点击对应的按钮跳转到相关的功能页面, 现在由于产品需求要求禁用应用信息,不让进入到应用信息页面所以要去掉应用信息…...

10 DETR 论文精读【论文精读】End-to-End Object Detection with Transformers
目录 DETR 这篇论文,大家为什么喜欢它?为什么大家说它是一个目标检测里的里程碑式的工作?而且为什么说它是一个全新的架构? 1 题目 2摘要 2.1新的任务定义:把这个目标检测这个任务直接看成是一个集合预测的问题 2.…...

高数笔记05:不定积分与定积分
图源:文心一言 时间比较紧张,仅导图~~🥝🥝 第1版:查资料、画导图~🧩🧩 参考资料:《高等数学 基础篇》武忠祥 🐳目录 🐳目录 🐳不定积分 &#…...
【代码随想录】算法训练计划13
1、347. 前 K 个高频元素 题目: 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2] 思路: sort.Slice学习一下,其实还有so…...
Python图像处理之OpenCV模块
Python图像处理 1、OpenCV模块简介2、OpenCV模块图像常用操作3、PIL与OpenCV图像格式转换4、图像识别应用案例4.1、人脸识别4.2、车牌识别4.3、文本识别1、OpenCV模块简介 OpenCV(Open Source Computer Vision Library)是一个基于BSD许可(开源)发行的跨平台计算机视觉库,主…...

动态规划-丑数
** 描述 把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第 n个丑数。 数据范围: 0≤n≤2000 要求&#x…...

【MogDB/openGauss的三种函数稳定性关键字】
一、ORACLE中的类似的函数稳定性关键字(DETERMINISTIC) 在ORACLE里,function有着一个DETERMINISTIC参数,它表示一个函数在输入不变的情况下输出是否确定,只要输入的参数一样,返回的结果一定一样的…...
java-对Integer.MAX_VALUE做加法
public static void main(String[] args) {int maxValue Integer.MAX_VALUE;System.out.println("maxValue1 " (maxValue1));System.out.println("maxValue2 " (maxValue2));System.out.println("maxValue3 " (maxValue3));}//结果 maxVa…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...