SQL语句性能优化
1、查询 SQL 尽量不要使用 select *,而是 select 具体字段
反例子:
select * from sys_user;
正例子:
select id,name from sys_user;
理由如下:
- 只取需要的字段,节省资源、减少网络开销。
- select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。
2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用 limit 1
假设现在有 sys_user 员工表,要找出一个名字叫 jay 的人:
CREATE TABLE `sys_user` (
`id` int(11) NOT NULL,
`name` varchar(255) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`date` datetime DEFAULT NULL,
`sex` int(1) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
反例:
select id,name from sys_user where name='jay'
正例:
select id,name from sys_user where name='jay' limit 1;
理由如下:
- 加上 limit 1 后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。
- 当然,如果 name 是唯一索引的话,是不必要加上 limit 1 了,因为 limit 的存在主要就是为了防止全表扫描,从而提高性能,如果一个语句本身可以预知不用全表扫描,有没有 limit ,性能的差别并不大。
3、应尽量避免在 where 子句中使用 or 来连接条件
新建一个 user 表,它有一个普通索引 userId,表结构如下:
CREATE TABLE `user` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`userId` int(11) NOT NULL,
`age` int(11) NOT NULL,
`name` varchar(255) NOT NULL,
PRIMARY KEY (`id`),
KEY `idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
假设现在需要查询 userid 为 1 或者年龄为 18 岁的用户,很容易有以下 SQL。
反例:
select * from user where userid=1 or age =18
正例:
//使用union all
select * from user where userid=1
union all
select * from user where age = 18
//或者分开两条sql写:
select * from user where userid=1
select * from user where age = 18
理由:使用 or 可能会使索引失效,从而全表扫描。
对于 or+没有索引的 age 这种情况,假设它走了 userId 的索引,但是走到 age 查询条件时,它还得全表扫描,也就是需要三步过程:全表扫描+索引扫描+合并,如果它一开始就走全表扫描,直接一遍扫描就完事。
MySQL 是有优化器的,处于效率与成本考虑,遇到 or 条件,索引可能失效,看起来也合情合理。
4、优化 limit 分页
我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。
反例:
select id,name,age from sys_user limit 10000,10
正例:
//方案一 :返回上次查询的最大记录(偏移量)
select id,name from sys_user where
相关文章:
SQL语句性能优化
1、查询 SQL 尽量不要使用 select *,而是 select 具体字段 反例子: select * from sys_user; 正例子: select id,name from sys_user; 理由如下: 只取需要的字段,节省资源、减少网络开销。select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。…...
线性代数之 伪逆矩阵
目录 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD ◼ 用Python代码计算A的伪逆矩阵 ◼ 笔算A的伪逆矩阵 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD 逆矩阵并不总是存在,即使是方阵。然而,对于非正方形矩阵,存在一个伪逆矩阵,也叫摩尔-彭罗斯…...
【3D图像分割】基于Pytorch的VNet 3D 图像分割5(改写数据流篇)
在这篇文章:【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割2(基础数据流篇) 的最后,我们提到了: 在采用vent模型进行3d数据的分割训练任务中,输入大小是16*96*96,这个的裁剪是放到Dataset类…...
【漏洞复现】Apache_Shiro_1.2.4_反序列化漏洞(CVE-2016-4437)
感谢互联网提供分享知识与智慧,在法治的社会里,请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞分析3、漏洞验证 说明内容漏洞编号CVE-2016-4437漏洞名称Apache_Shiro_1.2.4_反序列化漏洞漏洞评级…...
Mac连接linux的办法(自带终端和iterm2)
1. 使用Mac自带终端Terminal 1.1 点击右上角的聚焦搜索,再输入终端 1.2 查找linux系统的ip地址 在虚拟机里输入如下命令,找到蓝色区域的就是ip地址 ip addr 如果没有显示ip地址,可以重新安装一下虚拟机,之后确保以太网的连接是打…...
js调整table表格上下相邻元素顺序
有时候我们会遇到要通过箭头控制table表格上下顺序的需求,如下: 点击向下就将该元素下移一位,下面的一位元素就移上来,点击向上就将该元素上移一位,上面的一位元素就移下来,也就是相邻元素互换位置顺序: <el-table :data="targetTable" border style=&quo…...
基于ruoyi框架项目-部署到服务器上
基于ruoyi框架项目-部署到服务器上 文章目录 基于ruoyi框架项目-部署到服务器上1.前端vue编译,后的dist下内容打包(前后端分离版本需要)2.后端打包成jar包(如果是thymeleaf仅需打包jar)3.上传到服务器目录下4. docker部…...
Docker 持久化存储和数据共享_Volume
有些容器会自动产生一些数据,为了不让数据随着 container 的消失而消失,保证数据的安全性。例如:数据库容器,数据表的表会产生一些数据,如果我把 container 给删除,数据就丢失。为了保证数据不丢失…...
万宾科技智能井盖监测仪器助力建设数字化城市
市政公共设施建设在近几年来发展迅速,市政设备的更新换代,资产管理等也成为其中的重要一项。在市政设施建设过程中,井盖也是不可忽视的,一方面,根据传统的管理井盖模式来讲,缺乏有效的远程监控管理方法和手…...
第十一章《搞懂算法:聚类是怎么回事》笔记
聚类是机器学习中一种重要的无监督算法,可以将数据点归结为一系列的特定组合。归为一类的数据点具有相同的特性,而不同类别的数据点则具有各不相同的属性。 11.1 聚类算法介绍 人们将物理或抽象对象的集合分成由类似 的对象组成的多个类的过程被称为聚…...
给定n个点或一个凸边形,求其最小外接矩形,可视化
这里写目录标题 原理代码 原理 求n个点的最小外接矩形问题可以等价为先求这n个点的凸包,再求这个凸包的最小外接矩形。 其中求凸包可以使用Graham-Scan算法 需要注意的是, 因为Graham-Scan算法要求我们从先找到凸包上的一个点,所以我们可以先…...
蓝桥杯每日一题2023.11.6
取位数 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 由题意我们知道len中为现阶段长度,如果其与k相等也就是找到了正确的位数,否则就调用递归来进行搜索,每次搜索一位数。 #include <stdio.h> // 求x用10进制表示时的数位长度 int …...
V-REP和Python的联合仿真
机器人仿真软件 各类免费的的机器人仿真软件优缺点汇总_robot 仿真 软件收费么_dyannacon的博客-CSDN博客 课程地址 https://class.guyuehome.com/p/t_pc/course_pc_detail/column/p_605af87be4b007b4183a42e7 课程资料 guyueclass: 古月学院课程代码 旋转变换 旋转的左乘与…...
WPF布局控件之DockPanel布局
前言:博主文章仅用于学习、研究和交流目的,不足和错误之处在所难免,希望大家能够批评指出,博主核实后马上更改。 概述: DockPanel 位置子控件基于子 Dock 属性,你有 4 个选项停靠,左 (默认) &…...
【实战Flask API项目指南】之二 Flask基础知识
实战Flask API项目指南之 Flask基础知识 本系列文章将带你深入探索实战Flask API项目指南,通过跟随小菜的学习之旅,你将逐步掌握Flask 在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧! 前言 当小菜踏入Flask后端开发的世界&…...
Linux 编译链接那些事儿(02)C++链接库std::__cxx11::basic_string和std::__1::basic_string链接问题总结
1 问题背景说明 在自己的项目源码中引用libeasysqlite.so时编译成功,但运行时遇到问题直接报错,找不到符号 symbol:_ZN3sql5FieldC1ENSt3__112basic_stringIcNS1_11char_traitsIcEENS1_9allocatorIcEEEENS_10field_typeEi。 2 问题描述和解…...
按键精灵中的UI界面操作
1. 按键精灵中UI界面常用的控件 1. 文字框 界面1: {标签页1:{文字框:{名称:"文字框1",显示内容:"显示内容",文字大小:0,高度:0,宽度:0,注释:"文字大小、高度、宽度是可选属性,如需使用默认值,可保持值为0或直接删除此属性&qu…...
dpdk 程序如何配置网卡收发包队列描述符配置?
问题描述 dpdk 程序在配置网卡队列时会涉及收发包队列描述符数量配置问题,收发包描述符的数量看似是一个简单的配置,却对转发性能有着一定的影响。实际业务程序中,收发包描述符大小配置一般参考 dpdk 内部示例程序配置进行,经验之…...
二蛋赠书七期:《云原生数据中台:架构、方法论与实践》
前言 大家好!我是二蛋,一个热爱技术、乐于分享的工程师。在过去的几年里,我一直通过各种渠道与大家分享技术知识和经验。我深知,每一位技术人员都对自己的技能提升和职业发展有着热切的期待。因此,我非常感激大家一直…...
计算机毕设 基于大数据的服务器数据分析与可视化系统 -python 可视化 大数据
文章目录 0 前言1 课题背景2 实现效果3 数据收集分析过程**总体框架图****kafka 创建日志主题****flume 收集日志写到 kafka****python 读取 kafka 实时处理****数据分析可视化** 4 Flask框架5 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升&a…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
