当前位置: 首页 > news >正文

SQL语句性能优化

1、查询 SQL 尽量不要使用 select *,而是 select 具体字段

反例子:

select * from sys_user

正例子:

select idname from sys_user

理由如下:

  • 只取需要的字段,节省资源、减少网络开销。
  • select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。

2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用 limit 1

假设现在有 sys_user 员工表,要找出一个名字叫 jay 的人:

CREATE TABLE `sys_user` (
  `id` int(11) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  `date` datetime DEFAULT NULL,
  `sex` int(1) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

反例:

select idname from sys_user where name='jay' 

正例:

select idname from sys_user where name='jay' limit 1

理由如下:

  • 加上 limit 1 后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。
  • 当然,如果 name 是唯一索引的话,是不必要加上 limit 1 了,因为 limit 的存在主要就是为了防止全表扫描,从而提高性能,如果一个语句本身可以预知不用全表扫描,有没有 limit ,性能的差别并不大。

3、应尽量避免在 where 子句中使用 or 来连接条件

新建一个 user 表,它有一个普通索引 userId,表结构如下:

CREATE TABLE `user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `userId` int(11) NOT NULL,
  `age` int(11) NOT NULL,
  `name` varchar(255) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

假设现在需要查询 userid 为 1 或者年龄为 18 岁的用户,很容易有以下 SQL。

反例:

select * from user where userid=1 or age =18 

正例:

//使用union all
select * from user where userid=1 
union all 
select * from user where age = 18

//或者分开两条sql写:
select * from user where userid=1
select * from user where age = 18

理由:使用 or 可能会使索引失效,从而全表扫描。

对于 or+没有索引的 age 这种情况,假设它走了 userId 的索引,但是走到 age 查询条件时,它还得全表扫描,也就是需要三步过程:全表扫描+索引扫描+合并,如果它一开始就走全表扫描,直接一遍扫描就完事。

MySQL 是有优化器的,处于效率与成本考虑,遇到 or 条件,索引可能失效,看起来也合情合理。

4、优化 limit 分页

我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。

反例:

select idname,age from sys_user limit 1000010 

正例:

//方案一 :返回上次查询的最大记录(偏移量)
select idname from sys_user where 

相关文章:

SQL语句性能优化

1、查询 SQL 尽量不要使用 select *,而是 select 具体字段 反例子: select * from sys_user; 正例子: select id,name from sys_user; 理由如下: 只取需要的字段,节省资源、减少网络开销。select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。…...

线性代数之 伪逆矩阵

目录 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD ◼ 用Python代码计算A的伪逆矩阵 ◼ 笔算A的伪逆矩阵 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD 逆矩阵并不总是存在,即使是方阵。然而,对于非正方形矩阵,存在一个伪逆矩阵,也叫摩尔-彭罗斯…...

【3D图像分割】基于Pytorch的VNet 3D 图像分割5(改写数据流篇)

在这篇文章:【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割2(基础数据流篇) 的最后,我们提到了: 在采用vent模型进行3d数据的分割训练任务中,输入大小是16*96*96,这个的裁剪是放到Dataset类…...

【漏洞复现】Apache_Shiro_1.2.4_反序列化漏洞(CVE-2016-4437)

感谢互联网提供分享知识与智慧,在法治的社会里,请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞分析3、漏洞验证 说明内容漏洞编号CVE-2016-4437漏洞名称Apache_Shiro_1.2.4_反序列化漏洞漏洞评级…...

Mac连接linux的办法(自带终端和iterm2)

1. 使用Mac自带终端Terminal 1.1 点击右上角的聚焦搜索,再输入终端 1.2 查找linux系统的ip地址 在虚拟机里输入如下命令,找到蓝色区域的就是ip地址 ip addr 如果没有显示ip地址,可以重新安装一下虚拟机,之后确保以太网的连接是打…...

js调整table表格上下相邻元素顺序

有时候我们会遇到要通过箭头控制table表格上下顺序的需求,如下: 点击向下就将该元素下移一位,下面的一位元素就移上来,点击向上就将该元素上移一位,上面的一位元素就移下来,也就是相邻元素互换位置顺序: <el-table :data="targetTable" border style=&quo…...

基于ruoyi框架项目-部署到服务器上

基于ruoyi框架项目-部署到服务器上 文章目录 基于ruoyi框架项目-部署到服务器上1.前端vue编译&#xff0c;后的dist下内容打包&#xff08;前后端分离版本需要&#xff09;2.后端打包成jar包&#xff08;如果是thymeleaf仅需打包jar&#xff09;3.上传到服务器目录下4. docker部…...

Docker 持久化存储和数据共享_Volume

有些容器会自动产生一些数据&#xff0c;为了不让数据随着 container 的消失而消失&#xff0c;保证数据的安全性。例如&#xff1a;数据库容器&#xff0c;数据表的表会产生一些数据&#xff0c;如果我把 container 给删除&#xff0c;数据就丢失。为了保证数据不丢失&#xf…...

万宾科技智能井盖监测仪器助力建设数字化城市

市政公共设施建设在近几年来发展迅速&#xff0c;市政设备的更新换代&#xff0c;资产管理等也成为其中的重要一项。在市政设施建设过程中&#xff0c;井盖也是不可忽视的&#xff0c;一方面&#xff0c;根据传统的管理井盖模式来讲&#xff0c;缺乏有效的远程监控管理方法和手…...

第十一章《搞懂算法:聚类是怎么回事》笔记

聚类是机器学习中一种重要的无监督算法&#xff0c;可以将数据点归结为一系列的特定组合。归为一类的数据点具有相同的特性&#xff0c;而不同类别的数据点则具有各不相同的属性。 11.1 聚类算法介绍 人们将物理或抽象对象的集合分成由类似 的对象组成的多个类的过程被称为聚…...

给定n个点或一个凸边形,求其最小外接矩形,可视化

这里写目录标题 原理代码 原理 求n个点的最小外接矩形问题可以等价为先求这n个点的凸包&#xff0c;再求这个凸包的最小外接矩形。 其中求凸包可以使用Graham-Scan算法 需要注意的是&#xff0c; 因为Graham-Scan算法要求我们从先找到凸包上的一个点&#xff0c;所以我们可以先…...

蓝桥杯每日一题2023.11.6

取位数 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 由题意我们知道len中为现阶段长度&#xff0c;如果其与k相等也就是找到了正确的位数&#xff0c;否则就调用递归来进行搜索&#xff0c;每次搜索一位数。 #include <stdio.h> // 求x用10进制表示时的数位长度 int …...

V-REP和Python的联合仿真

机器人仿真软件 各类免费的的机器人仿真软件优缺点汇总_robot 仿真 软件收费么_dyannacon的博客-CSDN博客 课程地址 https://class.guyuehome.com/p/t_pc/course_pc_detail/column/p_605af87be4b007b4183a42e7 课程资料 guyueclass: 古月学院课程代码 旋转变换 旋转的左乘与…...

WPF布局控件之DockPanel布局

前言&#xff1a;博主文章仅用于学习、研究和交流目的&#xff0c;不足和错误之处在所难免&#xff0c;希望大家能够批评指出&#xff0c;博主核实后马上更改。 概述&#xff1a; DockPanel 位置子控件基于子 Dock 属性&#xff0c;你有 4 个选项停靠&#xff0c;左 (默认) &…...

【实战Flask API项目指南】之二 Flask基础知识

实战Flask API项目指南之 Flask基础知识 本系列文章将带你深入探索实战Flask API项目指南&#xff0c;通过跟随小菜的学习之旅&#xff0c;你将逐步掌握Flask 在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧&#xff01; 前言 当小菜踏入Flask后端开发的世界&…...

Linux 编译链接那些事儿(02)C++链接库std::__cxx11::basic_string和std::__1::basic_string链接问题总结

1 问题背景说明 在自己的项目源码中引用libeasysqlite.so时编译成功&#xff0c;但运行时遇到问题直接报错&#xff0c;找不到符号 symbol&#xff1a;_ZN3sql5FieldC1ENSt3__112basic_stringIcNS1_11char_traitsIcEENS1_9allocatorIcEEEENS_10field_typeEi。 2 问题描述和解…...

按键精灵中的UI界面操作

1. 按键精灵中UI界面常用的控件 1. 文字框 界面1: {标签页1:{文字框:{名称:"文字框1",显示内容:"显示内容",文字大小:0,高度:0,宽度:0,注释:"文字大小、高度、宽度是可选属性&#xff0c;如需使用默认值&#xff0c;可保持值为0或直接删除此属性&qu…...

dpdk 程序如何配置网卡收发包队列描述符配置?

问题描述 dpdk 程序在配置网卡队列时会涉及收发包队列描述符数量配置问题&#xff0c;收发包描述符的数量看似是一个简单的配置&#xff0c;却对转发性能有着一定的影响。实际业务程序中&#xff0c;收发包描述符大小配置一般参考 dpdk 内部示例程序配置进行&#xff0c;经验之…...

二蛋赠书七期:《云原生数据中台:架构、方法论与实践》

前言 大家好&#xff01;我是二蛋&#xff0c;一个热爱技术、乐于分享的工程师。在过去的几年里&#xff0c;我一直通过各种渠道与大家分享技术知识和经验。我深知&#xff0c;每一位技术人员都对自己的技能提升和职业发展有着热切的期待。因此&#xff0c;我非常感激大家一直…...

计算机毕设 基于大数据的服务器数据分析与可视化系统 -python 可视化 大数据

文章目录 0 前言1 课题背景2 实现效果3 数据收集分析过程**总体框架图****kafka 创建日志主题****flume 收集日志写到 kafka****python 读取 kafka 实时处理****数据分析可视化** 4 Flask框架5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&a…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...