当前位置: 首页 > news >正文

力扣:153. 寻找旋转排序数组中的最小值(Python3)

题目:

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

来源:力扣(LeetCode)
链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

示例:

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。


示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0

解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。


示例 3:

输入:nums = [11,13,15,17]
输出:11

解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

解法:

使用min函数。

代码:

class Solution:def findMin(self, nums: List[int]) -> int:return min(nums)

相关文章:

力扣:153. 寻找旋转排序数组中的最小值(Python3)

题目: 已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums [0,1,2,4,5,6,7] 在变化后可能得到: 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]若旋转…...

matlab中实现画函数图像添加坐标轴

大家好,我是带我去滑雪! 主函数matlab代码: function PlotAxisAtOrigin(x,y); if nargin 2 plot(x,y);hold on; elsedisplay( Not 2D Data set !) end; Xget(gca,Xtick); Yget(gca,Ytick); XLget(gca,XtickLabel); YLget(gca,YtickLabel)…...

C语言求解一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?

完整代码&#xff1a; /* 一个整数&#xff0c;它加上100后是一个完全平方数&#xff0c;再加上168又是一个完全平方数&#xff0c;请问 该数是多少&#xff1f;*/ #include<stdio.h>int main(){//num为最终所求那个数int num;//i*i为第一个完全平方数for (int i 10; …...

AtCoder abc148

C题 求GCD D题 顺序遍历 E题 trailing zero只与5的个数有关&#xff0c;因此算一下5/25/125…的倍数 # -*- coding: utf-8 -*- # time : 2023/6/2 13:30 # file : atcoder.py # software : PyCharmimport bisect import copy import sys from itertools import perm…...

k8s、docker 卸载

k8s卸载 k8s 重置 kubeadm reset -f如果kubernets是1.24以上版本&#xff0c;请先单独卸载containerd sudo apt purge containerd.iok8s软件卸载 ubuntu #apt卸载 apt purge kubelet kubeadm kubectlcentos yum erase -y kubelet kubectl kubeadm 删除kubelet相关信息&am…...

【Linux】Shell命令行的简易实现(C语言实现)内键命令,普通命令

文章目录 0.准备工作1.大体框架 一、获取命令行二、解析命令行三、进程执行1.普通命令2.内建命令 四、完整代码&#xff1a; 0.准备工作 1.大体框架 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <u…...

Kafka -- 架构、分区、副本

1、Kafka的架构&#xff1a; 1、producer&#xff1a;消息的生产者 2、consumer&#xff1a;消息的消费者 3、broker&#xff1a;kafka集群的服务者&#xff0c;一个broker就是一个节点&#xff0c;主要是负责处理消息的读、写的请求和存储消息。在kafka cluster中包含很多的br…...

CSS特效001:鼠标放div上,实现旋转、放大、移动等效果

GPT能够很好的应用到我们的代码开发中&#xff0c;能够提高开发速度。你可以利用其代码&#xff0c;做出一定的更改&#xff0c;然后实现效能。 css实战中&#xff0c;经常会看到这样的场景&#xff0c;鼠标放到一个图片或者一个div块状时候&#xff0c;会出现旋转、放大、移动…...

gin 快速入门手册

文章目录 安装URL和路由分组2. 带参数的url3. 获取路由分组的参数 获取参数1. 获取get参数2. 获取post参数3. get、post混合 JSON 、 ProtoBuf渲染1. 输出json和protobuf2. PureJSON 表单验证1. 表单的基本验证 中间件和next函数1. 无中间件启动2. 使用中间件3. 自定义组件 设置…...

Window下安装 Mongodb,并实现单点事务

在window操作系统下安装Mongodb&#xff0c;并让单点mongodb支持事务&#xff0c;mongodb5以上时才支持事务&#xff0c;所以必须时mongodb5及以上版本才支持。 1、下载mongodb安装文件 &#xff08;1&#xff09; 下载mongodb msi 安装文件 地址&#xff1a;mongocommunity &…...

【通信原理】第三章 随机过程——例题

一、随机过程 1. 数学特征 ① 随机信号&#xff08;三角函数表达式&#xff09; ② 随机信号&#xff08;求和表达式&#xff09; 2. 功率谱密度 ① 相位确定&#xff0c;求功率谱密度 ② 已知相位分布&#xff0c;求功率谱密度 ③ 信号为两信号之和&#xff0c;求功率谱密度…...

线性【SVM】数学原理和算法实现

一. 数学原理 SVM是一类有监督的分类算法&#xff0c;它的大致思想是&#xff1a;假设样本空间上有两类点&#xff0c;如下图所示&#xff0c;我们希望找到一个划分超平面&#xff0c;将这两类样本分开&#xff0c;我们希望这个间隔能够最大化来使得模型泛化能力最强。 如上图所…...

R语言中的函数26:polyroot多项式求根函数

目录 介绍函数介绍参数含义 示例 介绍 R语言中的base::polyroot()可以用于对多项式求根&#xff0c;求根的多项式可以是复数域上的。 函数介绍 polyroot(z)该函数利用Jenkins-Traub算法对多项式 p ( x ) p(x) p(x)进行求根&#xff0c;其中 p ( x ) z 1 z 2 x ⋯ z n x…...

2023年辽宁省数学建模竞赛A题铁路车站的安全标线

2023年辽宁省数学建模竞赛 A题 铁路车站的安全标线 原题再现&#xff1a; 在火车站或地铁站台上&#xff0c;离站台边缘 1 米左右的地方都画有一条黄线(或白线)&#xff0c;这是为什么呢?   这条线称为安全线(业内称之为安全标线)&#xff0c;人们在候车时必须站在安全线以…...

半导体工厂将应用哪些制造创新技术?

半导体工厂是高科技产业的结晶&#xff0c;汇聚了世界上最新的技术。 在半导体的原料硅晶片上绘制设计图纸&#xff0c;不产生误差&#xff0c;准确切割并包装&#xff0c;然后用芯片生产出我们使用的电脑、智能手机、手表等各种电子产品。绝大多数半导体厂都采用一贯的工艺&a…...

[unity]深色模式/浅色模式

这里用的是Windows版的unity&#xff0c;具体版本号如下&#xff1a; 选项的路径如下&#xff1a;Edit—Preferences—General—Editor Theme 然后就可以选是dark还是light了&#xff1a;...

在react中组件间过渡动画如何实现?

一、是什么 在日常开发中&#xff0c;页面切换时的转场动画是比较基础的一个场景 当一个组件在显示与消失过程中存在过渡动画&#xff0c;可以很好的增加用户的体验 在react中实现过渡动画效果会有很多种选择&#xff0c;如react-transition-group&#xff0c;react-motion&…...

解析找不到msvcr100.dll文件的解决方法,4个方法修复msvcr100.dll

msvcr100.dll是Microsoft Visual C 2010运行库的组成部分&#xff0c;一些基于Visual C开发的软件运行时会依赖这个dll文件。出现“找不到msvcr100.dll”的错误提示&#xff0c;往往意味着这个文件在你的计算机系统中丢失或损坏&#xff0c;导致相关程序无法正常运行。以下是找…...

达梦主备部署

达梦主备部署 一.概括1&#xff09;环境软件下载2&#xff09;集群规划 二.安装1&#xff09;安装前2&#xff09;安装数据库 三.主备机器部署1)初始化数据库&#xff08;1&#xff09;主库配置&#xff08;2&#xff09;备库配置 2)脱机备份&#xff08;1&#xff09;主服务器…...

后期混音效果全套插件Waves 14 Complete mac中文版新增功能

Waves 14 Complete for Mac是一款后期混音效果全套插件&#xff0c;Waves音频插件,内置混响&#xff0c;压缩&#xff0c;降噪和EQ等要素到建模的模拟硬件&#xff0c;环绕声和后期制作工具&#xff0c;包含全套音频效果器&#xff0c;是可以让你使用所有功能。Waves 14 Comple…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...