当前位置: 首页 > news >正文

9.2 IGMPv2

  1. 实验目的

(1)     熟悉IGMPv2的应用场景

(2)     掌握IGMPv2的配置方法

  1. 实验拓扑

实验拓扑如图9-17所示:

                                              图9-17:IGMPv2

  1. 实验步骤
  1. 配置IP地址(请参考上一个实验)
  2. 运行IGP(请参考上一个实验)
  3. 运行PIM(请参考上一个实验)
  4. 运行IGMP V2(请参考上一个实验)

R2的配置

[R2]interface g0/0/0

[R2-GigabitEthernet0/0/0]igmp  enable

[R2-GigabitEthernet0/0/0]igmp  version 2

[R2-GigabitEthernet0/0/0]quit

R3的配置

[R3]interface g0/0/0

[R3-GigabitEthernet0/0/0]igmp  enable

[R3-GigabitEthernet0/0/0]igmp version 2

[R3-GigabitEthernet0/0/0]quit

  

  1. 实验调试

(1)查看IGMP的接口信息

[R3]display igmp interface

Interface information of VPN-Instance: public net

 GigabitEthernet0/0/0(10.1.1.253):

   IGMP is enabled

   Current IGMP version is 2  //版本2

   IGMP state: up

   IGMP group policy: none

   IGMP limit: -

   Value of query interval for IGMP (negotiated): -

   Value of query interval for IGMP (configured): 60 s  //查询间隔

   Value of other querier timeout for IGMP: 97 s 

   Value of maximum query response time for IGMP: 10 s  //最大响应定时器为10s

   Querier for IGMP: 10.1.1.252   //查询器优选IP地址最小的

  Total 1 IGMP Group reported

(2)打开调试信息

<R2>debugging igmp query

<R2>terminal monitor

<R2>terminal debugging

<R2>debugging igmp leave

[R2]info-center enable

(3)让PC1加入组224.1.1.1,其配置如图9-18所示:

                                                       图9-18:配置PC1加入组224.1.1.1

(4)查看调试信息

<R2>

Jun 30 2022 17:42:25.660.1-08:00 R2 IGMP/7/QUERY:(public net): Send version 2 general query on GigabitEthernet0/0/0(10.1.1.252) to destination 224.0.0.1 (G073310)

Jun 30 2022 17:42:36.600.3-08:00 R2 IGMP/7/EVENT:(public net): (S,G) creation event received for (192.168.1.2/32, 224.1.1.1/32). (G01985)

Jun 30 2022 17:42:36.600.4-08:00 R2 IGMP/7/EVENT:(public net): No state in global MRT. Not merging downstream for (192.168.1.2/32, 224.1.1.1/32) on interface GigabitEthernet0/0/2(12.1.1.2). (G011016)

(5)配置PC1离开组224.1.1.1,其配置如图9-19所示:

                                           图9-19:配置PC1离开组224.1.1.1

(7)查看抓包情况

第一步:PC1发送离开组消息,离开组报文的格式如图9-20所示:

  华为Datacom网络工程师HCIP全套学习课程(全套理论+实验)-学习视频教程-腾讯课堂                                           图9-20:离开组报文的格式

第二步:查询器会连发二个特定组查询,时间间隔为1s,其报文格式如图9-21所示:

                                            图9-21:查询报文格式

【技术要点】IGMPv2比IGMP新增加的包

1、leave

2、特定组查询

相关文章:

9.2 IGMPv2

实验目的 &#xff08;1&#xff09; 熟悉IGMPv2的应用场景 &#xff08;2&#xff09; 掌握IGMPv2的配置方法 实验拓扑 实验拓扑如图9-17所示&#xff1a; 图9-17&#xff1a;IGMPv2 实验步骤 配置IP地址&#xff08;请参考上一个实验&#xff09;运行IGP&#xff…...

巨头混战,抢着“兜底”自动驾驶安全

诚然&#xff0c;中国汽车行业的发展绝对不会拘泥于电动化&#xff0c;必定会在电动化的基础上&#xff0c;迎接下半场的快速智能化。 2021年6月&#xff0c;长城汽车线控底盘全球首次发布。 彼时&#xff0c;长城汽车技术副总裁宋东先宣布&#xff0c;整合了线控转向、线控制…...

RightCapital 第一轮面试题

现在我们就马上开始吧&#xff01; 答案在文末 JavaScript 是一门单线程的静态类型语言&#xff08;单选题&#xff09; 正确 错误 在 JavaScript 中下面哪种类型的值是不可变的&#xff08;immutable&#xff09;&#xff08;单选题&#xff09; Object Symbol Array Date …...

Python曲线肘部点检测-膝部点自动检测

文章目录一. 术语解释二. 拐点检测肘部法则是经常使用的法则。很多时候&#xff0c;可以凭人工经验去找最优拐点&#xff0c;但有时需要自动寻找拐点。最近解决了一下这个问题&#xff0c;希望对各位有用。一. 术语解释 **肘形曲线(elbow curve)**类似人胳膊状的曲线&#xff…...

【算法题】最大矩形面积,单调栈解法

力扣&#xff1a;84. 柱状图中最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 题意很简单&#xff0c;翻译一下就是&#xff1a;求该图中…...

活动策划|深度分析年货节活动该如何策划!

四月初&#xff0c;不平凡的初春开始恢复往日的平静。对于新零售行业&#xff0c;疫情的缓解也逐渐平稳生态链的运转。2020年新零售的格局在洗礼后&#xff0c;业务的聚焦点也从前端促销转移到后端履约的体验闭环&#xff0c;同时很大程度的推进企业在危机公关下的应对。618大促…...

Idea启动遇到 Web server failed to start. Port 8080 was already in use. 报错

Idea启动遇到问题-记录 报错英文提示&#xff1a; APPLICATION FAILED TO START Description: Web server failed to start. Port 8080 was already in use. Action: Identify and stop the process that’s listening on port 8080 or configure this application to liste…...

Python3中zip()函数知识点总结

1.引言 在本文中&#xff0c;我将带领大家深入了解Python中的zip()函数&#xff0c;使用它可以提升大家的工作效率。 闲话少说&#xff0c;我们直接开始吧&#xff01; 2. 基础知识 首先&#xff0c;我们来介绍一些基础知识点&#xff1a; Python中的某些数据类型是不可变的…...

过滤器,监听器,拦截器的原理与在Servlet和Spring的应用

在Java Web的开发中&#xff0c;最原始和初期的学习都是从Servlet开始的&#xff0c;Servlet是Java最为耀眼的技术&#xff0c;也是Java EE的技术变革。目前大火主流的框架spring boot也的spring mvc部分也是基于拓展servlet完成的。回到之前的文章spring 实现了对servlet的封装…...

minio spring boot 秒传、分片上传、断点续传文件实现

此处后端使用的是前期封装的自定义starter&#xff0c;具体链接可参考&#xff1a;minio对象存储spring boot starter封装组件 这里主要针对前期封装的组件&#xff0c;做一个简单的应用&#xff0c;前端直传可查看之前的文章 秒传 秒传的逻辑比较简单&#xff0c;在前传上传…...

MTK平台使用Omnipeek分析空口协议讲解

讲解这个之前,我们先来了解下beacon/robe Request/Probe Response 三种帧 beacon帧 信标帧,由AP以一定的时间间隔周期性发出,以此来告诉外界自己无线网络的存在。 Beacon帧作为802.11中一个周期性的帧,Beacon周期调高,对应睡眠周期拉长,故节能(即越来休息100ms再起来…...

string和自动推断类型

欢迎来观看温柔了岁月.c的博客目前设有C学习专栏C语言项目专栏数据结构与算法专栏目前主要更新C学习专栏&#xff0c;C语言项目专栏不定时更新待C专栏完毕&#xff0c;会陆续更新C项目专栏和数据结构与算法专栏一周主要三更&#xff0c;星期三&#xff0c;星期五&#xff0c;星…...

【软件测试】从功能到自动化测试,测试人的进阶之路细节,这些必不可少......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 测试流程&#xff0…...

C语言青蛙跳台阶【图文详解】

青蛙跳台阶前言1. 题目介绍2. 解题思路3. 利用图片来演示青蛙跳台阶的原理4. 如何用C语言实现青蛙跳台阶前言 在本文&#xff0c;我们要与一只活泼可爱的小青蛙合作&#xff0c;带领着它跳上台阶&#xff0c;这个小家伙精力充沛&#xff0c;特别擅长于跳跃。我们要让它做我们的…...

笔记(五)——list容器的基础理论知识

list容器是一个双向链表容器&#xff0c;可以高效地进行插入删除元素&#xff0c;但是不能随机存取元素&#xff08;不支持at()和[]操作符&#xff09;。一、list容器的对象构造方法list对象采用模板类的默认构造形式例如list<T> lst&#xff1b;#include<iostream>…...

浅谈网络中接口幂等性设计问题

所谓幂等性设计&#xff0c;就是说&#xff0c;一次和多次请求某一个资源应该具有同样的副作用。用数学的语言来表达就是&#xff1a;f(x) f(f(x))。 在数学里&#xff0c;幂等有两种主要的定义。 在某二元运算下&#xff0c;幂等元素是指被自己重复运算&#xff08;或对于函数…...

《C Primer Plus》第13章复习题与编程练习

《C Primer Plus》第13章复习题与编程练习复习题1. 下面的程序有什么问题&#xff1f;2. 下面的程序完成什么任务&#xff1f;&#xff08;假设在命令行环境中运行&#xff09;3. 假设程序中有下列语句&#xff1a;4. 编写一个程序&#xff0c;不接受任何命令行参数或接受一个命…...

计算机SCI论文应该怎么作图? - 易智编译EaseEditing

计算机SCI论文&#xff0c;作图时要注意以下几个方面的问题&#xff1a; 1.图片的格式要tiff或者eps&#xff1b; 2.文件大小不能超过10M&#xff1b; 3.长和宽也给出了具体要求&#xff1b; 4.色彩模式要RGB或者灰度图&#xff1b; 5.文中的文字字体和大小&#xff1b; …...

【一】kubernetes集群部署

一、docker环境搭建 1、移除以前docker相关包 sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine2、配置yam源 sudo yum install -y yum-utilssudo yum-config-manager --ad…...

Docker安装Redis

一、拉取镜像 命令&#xff1a;&#xff1a;docker pull <镜像名称>:<版本号> docker pull redis 二&#xff1a;Docker挂载配置文件 挂载&#xff1a;即将宿主的文件和容器内部目录相关联&#xff0c;相互绑定&#xff0c;在宿主机内修改文件的话也随之修改容…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...