当前位置: 首页 > news >正文

模型预处理的ToTensor和Normalize

模型预处理的ToTensor和Normalize

flyfish

import torch
import numpy as np
from torchvision import transformsmean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)# data0 =np.random.randint(0,255,size = [4,5,3],dtype='uint8')
# data0 = data0.astype(np.float64)
data0 = np.random.random((4, 5, 3))  # H x W x C
data0 = np.round(data0,4)
print(data0.shape)
print(data0)data1 = transforms.ToTensor()(data0)
print(data1.shape)  # C x H x W
print(data1)
data2 = transforms.Normalize(mean, std)(data1)
print(data2)

ToTensor 是数据维度发生变化H x W x C 变为 C x H x W,数值没有变化
Normalize(data - mean) / std

使用numpy实现验证

data1 = np.transpose(data0, (2, 0, 1))
print(data1.shape)
_std = np.array(std).reshape((3, 1, 1))
_mean = np.array(mean).reshape((3, 1, 1))data2 = (data1 - _mean) / _stdprint(data2)

原始数据的形状和内容 可以是图像的高度,宽度,通道
(4, 5, 3)

[[[0.8284 0.3419 0.6621][0.59   0.2306 0.4112][0.0636 0.406  0.2778][0.9551 0.2097 0.7681][0.3097 0.642  0.1968]][[0.722  0.9844 0.4942][0.1847 0.2435 0.3691][0.658  0.5643 0.9468][0.4002 0.7807 0.4393][0.2461 0.9049 0.0585]][[0.2606 0.067  0.6186][0.284  0.8524 0.2102][0.0447 0.0209 0.1313][0.0587 0.594  0.1016][0.6942 0.4514 0.7125]][[0.8787 0.7917 0.1181][0.9044 0.7948 0.3599][0.1706 0.7463 0.899 ][0.0758 0.2224 0.5447][0.3336 0.6096 0.3065]]]

ToTensor 后的形状和内容

torch.Size([3, 4, 5])

tensor([[[0.8284, 0.5900, 0.0636, 0.9551, 0.3097],[0.7220, 0.1847, 0.6580, 0.4002, 0.2461],[0.2606, 0.2840, 0.0447, 0.0587, 0.6942],[0.8787, 0.9044, 0.1706, 0.0758, 0.3336]],[[0.3419, 0.2306, 0.4060, 0.2097, 0.6420],[0.9844, 0.2435, 0.5643, 0.7807, 0.9049],[0.0670, 0.8524, 0.0209, 0.5940, 0.4514],[0.7917, 0.7948, 0.7463, 0.2224, 0.6096]],[[0.6621, 0.4112, 0.2778, 0.7681, 0.1968],[0.4942, 0.3691, 0.9468, 0.4393, 0.0585],[0.6186, 0.2102, 0.1313, 0.1016, 0.7125],[0.1181, 0.3599, 0.8990, 0.5447, 0.3065]]], dtype=torch.float64)

Normalize 后的形状和内容

tensor([[[ 1.4996,  0.4585, -1.8402,  2.0528, -0.7655],[ 1.0349, -1.3114,  0.7555, -0.3703, -1.0432],[-0.9799, -0.8777, -1.9227, -1.8616,  0.9135],[ 1.7192,  1.8314, -1.3729, -1.7869, -0.6611]],[[-0.5094, -1.0063, -0.2232, -1.0996,  0.8304],[ 2.3589, -0.9487,  0.4835,  1.4496,  2.0040],[-1.7366,  1.7696, -1.9424,  0.6161, -0.0205],[ 1.4987,  1.5125,  1.2960, -1.0429,  0.6857]],[[ 1.1382,  0.0231, -0.5698,  1.6093, -0.9298],[ 0.3920, -0.1640,  2.4036,  0.1480, -1.5444],[ 0.9449, -0.8702, -1.2209, -1.3529,  1.3622],[-1.2796, -0.2049,  2.1911,  0.6164, -0.4422]]], dtype=torch.float64)

使用numpy实现验证的结果

(3, 4, 5)
[[[ 1.49956332  0.45851528 -1.84017467  2.05283843 -0.76550218][ 1.0349345  -1.31135371  0.75545852 -0.37030568 -1.04323144][-0.97991266 -0.87772926 -1.92270742 -1.86157205  0.91353712][ 1.71921397  1.83144105 -1.37292576 -1.78689956 -0.66113537]][[-0.509375   -1.00625    -0.22321429 -1.09955357  0.83035714][ 2.35892857 -0.94866071  0.48348214  1.44955357  2.00401786][-1.73660714  1.76964286 -1.94241071  0.61607143 -0.02053571][ 1.49866071  1.5125      1.29598214 -1.04285714  0.68571429]][[ 1.13822222  0.02311111 -0.56977778  1.60933333 -0.92977778][ 0.392      -0.164       2.40355556  0.148      -1.54444444][ 0.94488889 -0.87022222 -1.22088889 -1.35288889  1.36222222][-1.27955556 -0.20488889  2.19111111  0.61644444 -0.44222222]]]

两者除了保留小数位数不同外,其他一致

相关文章:

模型预处理的ToTensor和Normalize

模型预处理的ToTensor和Normalize flyfish import torch import numpy as np from torchvision import transformsmean (0.485, 0.456, 0.406) std (0.229, 0.224, 0.225)# data0 np.random.randint(0,255,size [4,5,3],dtypeuint8) # data0 data0.astype(np.float64) da…...

nodejs express multer 保存文件名为中文时乱码,问题解决 originalname

nodejs express multer 保存文件名为中文时乱码,问题解决 originalname 一、问题描述 用 express 写了个后台,在接收文件并保存的时候 multer 接收到的文件名为乱码。 二、解决 找了下解决方法,在 github 的 multer issue 中找到了答案 参…...

大数据之LibrA数据库系统告警处理(ALM-12035 恢复任务失败后数据状态未知)

告警解释 执行恢复任务失败后,系统会自动回滚,如果回滚失败,可能会导致数据丢失等问题,如果该情况出现,则上报告警,如果下一次该任务恢复成功,则恢复告警。 告警属性 告警ID 告警级别 可自动…...

汽车生产RFID智能制造设计解决方案与思路

汽车行业需求 汽车行业正面临着快速变革,传统的汽车制造方式正在向柔性化、数字化、自动化和数据化的智能制造体系转变,在这个变革的背景下,汽车制造企业面临着物流、生产、配送和资产管理等方面的挑战,为了应对这些挑战&#xf…...

讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是一种无监督学习算法,常用于对数据进行聚类分析。其主要步骤如下: 首先随机选择K个中心点(质心)作为初始聚类中心。 对于每一个样本,计算其与每一个中心点的距离,将其归到距离最近的中心点…...

开源DB-GPT实现连接数据库详细步骤

官方文档:欢迎来到DB-GPT中文文档 — DB-GPT 👏👏 0.4.1 第一步:安装Minicoda https://docs.conda.io/en/latest/miniconda.html 第二步:安装Git Git - Downloading Package 第三步:安装embedding 模型到…...

java学习part01

15-Java语言概述-单行注释和多行注释的使用_哔哩哔哩_bilibili 1.命令行 javac编译出class文件 然后java运行 2. java文件每个文件最多一个public类 3.java注释 单行注释 // 多行注释 文档注释 文档注释内容可以被JDK提供的工具javadoc所解析,生成一套以网页文…...

渗透测试学习day3

文章目录 靶机:DancingTask 1Task 2Task 3Task 4Task 5Task 6Task 7Task 8 靶机:RedeemerTask 1Task 2Task 3Task 4Task 5Task 6Task 7Task 8Task 9Task 10Task 11 靶机:AppointmentTask 1Task 2Task 3Task 4Task 5Task 6Task 7Task 8Task 9T…...

【Proteus仿真】【Arduino单片机】数码管显示

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使用TM1637、共阳数码管等。 主要功能: 系统运行后,数码管显示数字、字符。 二、软件设计 /* 作者:嗨小易&am…...

【Bug】Python利用matplotlib绘图无法显示中文解决办法

一,问题描述 当利用matplotlib进行图形绘制时,图表标题,坐标轴,标签中文无法显示,显示为方框,并报错 运行窗口报错: 这是中文字体格式未导入的缘故。 二,解决方案 在代码import部…...

Docsify 顶部的导航是如何配置

如下图,我们在 Docsify 的文档中配置了一个顶部导航。 下面的步骤对顶部导航的配置进行简要介绍。 配置 有 2 个地方需要这个地方进行配置。 首先需要在 index.html 文件中的 loadNavbar: true, 配置上。 然后再在项目中添加一个 _navbar.md 文件。 在这个文件中…...

最详细的LightGBM参数介绍与深入分析

前言 我使用LightGBM有一段时间了,它一直是我处理大多数表格数据问题的首选算法。它有很多强大的功能,如果你还没有看过的话,我建议你去了解一下。 但我一直对了解哪些参数对性能影响最大,以及如何调整LightGBM参数以发挥最大作用…...

blender动画制作全流程软件

blender官网下载地址 Download — blender.org Blender是一款功能强大的免费开源的3D动画制作软件。它具有广泛的功能和工具,适用于从简单的2D动画到复杂的3D渲染和特效的各种需求。 以下是Blender的一些主要特点: 建模工具:Blender提供了一…...

mac的可清除空间(时间机器)

看到这个可用82GB(458.3MB可清除) 顿时感觉清爽,之前的还是可用82GB(65GB可清除),安装个xcode都安装不上,费解半天,怎么都解决不了这个问题,就是买磁盘情理软件也解决不了…...

【深度学习】可交互讲解图神经网络GNN

在正式开始前,先找准图神经网络GNN(Graph Neural Network)的位置。 图神经网络GNN是深度学习的一个分支。 深度学习的四个分支对应了四种常见的数据格式,前馈神经网络FNN处理表格数据,表格数据可以是特征向量,卷积神经网络CNN处理…...

网工内推 | 运维工程师,软考认证优先,全额社保

01 北京中科网威信息技术有限公司 招聘岗位:运维工程师 职责描述: 1 熟悉网络安全标准,等级保护管理制度 2 负责等级保护管理制度的的企业管理要求编写; 3 熟系网络组网和相关安全产品; 4 负责用户需求挖掘、分析和…...

查找或替换excel换行符ctrl+j和word中的换行符^p,^l

一、excel中 直接上图。使用ctrlh调出替换,查找内容里按ctrlj(会出现一个闪的小点),即为换行符。 二、word中 在word中,^p和^l分别代表换行符(enter)和手动换行符(使用shiftenter&…...

pytorch_神经网络构建5

文章目录 生成对抗网络自动编码器变分自动编码器重参数GANS自动编码器变分自动编码器gans网络Least Squares GANDeep Convolutional GANs 生成对抗网络 这起源于一种思想,假如有一个生成器,从原始图片那里学习东西,一个判别器来判别图片是真实的还是生成的, 假如生成的东西能以…...

安卓常见设计模式5------桥接模式(Kotlin版)

1. W1 是什么,什么是桥接模式? 桥接模式是一种结构性模式。 桥接模式旨在将抽象与实现解耦,使它们可以独立地变化。可以这么理解,面向对象编程是单继承多实现的,如果我们有一个可扩展类,和多个相关的可扩展…...

tomcat web.xml文件中的session-config

<session-config>这个元素为该应用中创建的所有session定义默认超时时间&#xff0c;单位是分钟。这个值必须是整数。如果是0或者负数&#xff0c;表示不超时。如果该元素没有设置&#xff0c;容器设置一个默认值。 例如&#xff1a; <session-config><session…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...