当前位置: 首页 > news >正文

昇腾CANN 7.0 黑科技:DVPP硬件加速训练数据预处理,友好解决Host CPU预处理瓶颈

在NPU/GPU上进行模型训练计算,为了充分使用计算资源,一般采用批量数据处理方式,因此一般情况下为提升整体吞吐率,batch值会设置的比较大,常见的batch数为256/512,这样一来,对数据预处理处理速度要求就会比较高。对于AI框架来说,常见的应对方式是采用多个CPU进程并发处理,比如PyTorch框架的torchvision就支持多进程并发,使用多个CPU进程来进行数据预处理,以满足与NPU/GPU的计算流水并行处理。

然而,随着NPU算力和性能的倍速提升,host CPU数据预处理过程逐渐成为性能瓶颈。模型端到端训练时间会因为数据预处理的瓶颈而拉长,这种情况下,如何解决性能瓶颈,提升端到端模型执行性能呢?

下面来看一个torchvision的预处理过程:

# Data loading codetraindir = os.path.join(args.data, 'train')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])train_dataset = datasets.ImageFolder(traindir,transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),normalize,]))

大家是不是对这些接口功能很熟悉?实际上,NPU上的DVPP也能进行类似处理,诸如图片解码、图片缩放、翻转处理等。DVPP是NPU上专门用于数据预处理的模块,跟NN计算是完全独立的。那么,如何让DVPP接管torchvision的预处理逻辑呢?很简单,两行代码轻松搞定:

  import torchvision_npu  # 导入torchvision_npu包# Data loading codetraindir = os.path.join(args.data, 'train')normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])torchvision_npu.set_image_backend('npu')  # 设置图像处理后端为nputrain_dataset = datasets.ImageFolder(traindir,transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),normalize,]))
 

是不是很方便?AI算法工程师不需要修改torchvision的处理流程,不需要了解DVPP接口实现,也不需要去写C/C++代码,而这些全都是torchvision_npu的功劳。torchvision_npu中重新实现了functional.py,在每个预处理接口中,判断如果是npu类型的数据,则走npu的处理逻辑:

 if img.device.type == 'npu':_assert_image_npu(img)return F_npu.resize(img, size=size, interpolation=interpolation.value)

functional_npu.py内部调用npu的resize算子进行处理,接着通过AscendCL接口,调用DVPP硬件处理:

return torch.ops.torchvision.npu_resize(img, size=sizes, mode=mode)

return torch.ops.torchvision.npu_resize(img, size=sizes, mode=mode)
 

下面来看下替换之后的性能如何。以ImageNet中最常见的分辨率375*500的jpeg图片为例,CPU上执行预处理操作需要6.801ms:

使用DVPP不但能加速数据预处理,还能异步执行host下发任务和device任务,整个流程只需要2.25ms,单张图片处理节省了60%+的时间。

在ResNet50训练过程中,512batch数据处理只需要1.152 s,预处理多进程处理场景下性能优势更加明显。

基于Atlas 800T A2 训练服务器,ResNet50使用DVPP加速数据预处理,单P只需要6个预处理进程即可把NPU的算力跑满;而使用CPU预处理,则需要12个预处理进程才能达到相应的效果,大大减少了对host CPU的性能依赖。

典型网络场景,基于Atlas 800T A2 训练服务器,在CPU预处理成为性能瓶颈的情况下,使用DVPP预处理加速即可获得整网训练速度显著提升,其中ShuffleNetV2整网性能提升25%,MobileNetV1提升38%。

预处理使用独立的硬件加速器DVPP加速,可以有效降低对Host CPU的依赖,避免CPU性能受限导致NPU性能无法发挥。同时使用NPU上独立的DVPP硬件加速器进行预处理,可以与NN并行处理互不影响,数据在device内可以自闭环。DVPP预处理加速是在训练场景下的第一次使能,补齐了NPU训练预处理性能短板。

昇腾CANN内置的预处理算子是比较丰富的,后续在继续丰富torchvision预处理算子库的同时,也会进一步提升预处理算子的下发和执行流程,让流水处理的更好,减少数据处理的时间,持续提升昇腾CANN的产品竞争力,满足更广泛的业务场景诉求。

相关文章:

昇腾CANN 7.0 黑科技:DVPP硬件加速训练数据预处理,友好解决Host CPU预处理瓶颈

在NPU/GPU上进行模型训练计算,为了充分使用计算资源,一般采用批量数据处理方式,因此一般情况下为提升整体吞吐率,batch值会设置的比较大,常见的batch数为256/512,这样一来,对数据预处理处理速度…...

Aria2 任意文件写入漏洞复现

漏洞描述 Aria2 是一款轻量级、多协议、多源下载工具(支持 HTTP/HTTPS、FTP、BitTorrent、Metalink),内置 XML-RPC 和 JSON-RPC 接口。 我们可以使用 RPC 接口来操作 aria2 并将文件下载到任意目录,从而造成任意文件写入漏洞。 …...

思维模型 多看效应

本系列文章 主要是 分享 思维模型,涉及各个领域,重在提升认知。越熟悉,越喜欢。 1 多看效应的应用 1.1 多看效应在广告和营销领域的应用 1 可口可乐之歌 可口可乐公司在 20 世纪 60 年代推出了“可口可乐之歌”广告,这个广告通…...

持续集成交付CICD:Jenkins Pipeline与远程构建触发器

目录 一、实验 1.Jenkins Pipeline本地构建触发器 2.Jenkins Pipeline与远程构建触发器(第一种方式) 3.Jenkins Pipeline与远程构建触发器(第二种方式) 4.Jenkins Pipeline与远程构建触发器(第三种方式&#xff0…...

【无标题(PC+WAP)花卉租赁盆栽绿植类pbootcms站模板

(PCWAP)花卉租赁盆栽绿植类pbootcms网站模板 PbootCMS内核开发的网站模板,该模板适用于盆栽绿植网站等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可; PCWAP,同一个后台,数据即时同步&…...

pytorch 学习率衰减策略

##学习率衰减策略 import torch.nn.functional as F import torch import torch.nn as nn import matplotlib.pyplot as plt#初始化模型 class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.conv2 = nn.Co…...

Flink SQL -- 概述

1、Flink SQL中的动态表和连续查询 1、动态表: 因为Flink是可以做实时的,数据是在不断的变化的,所以动态表指的是Flink中一张实时变换的表,表中会不断的有新的数据。但是这张表并不是真正的物理表。 2、连续查询: 连续…...

Spring RabbitMQ那些事(1-交换机配置消息发送订阅实操)

目录 一、序言二、配置文件application.yml三、RabbitMQ交换机和队列配置1、定义4个队列2、定义Fanout交换机和队列绑定关系2、定义Direct交换机和队列绑定关系3、定义Topic交换机和队列绑定关系4、定义Header交换机和队列绑定关系 四、RabbitMQ消费者配置五、RabbitMQ生产者六…...

C++动态库

C动态库 动态库文件(Dynamic Link Library,DLL)是程序在运行时所需要调用的库。静态库文件是程序在编译时所需要调用的库。 1 环境介绍 VS版本:VS2017 编程语言:C 2 功能介绍 使用VS2017项目模板创建C动态库生成…...

【教3妹学编程-算法题】2923. 找到冠军 I

3妹:2哥2哥,你看到新闻了吗?襄阳健桥医院院长 公然“贩卖出生证明”, 真是太胆大包天了吧。 2哥 : 我也看到新闻了,7人被采取刑事强制措施。 就应该好好查查他们, 一查到底! 3妹:真的…...

矢量图形编辑软件Boxy SVG mac中文版软件特点

Boxy SVG mac是一款基于Web的矢量图形编辑器,它提供了一系列强大的工具和功能,可帮助用户创建精美的矢量图形。Boxy SVG是一款好用的软件,并且可以在Windows、Mac和Linux系统上运行。 Boxy SVG mac软件特点 简单易用:Boxy SVG的用…...

神经网络遗传算法函数极值寻优

大家好,我是带我去滑雪! 对于未知的非线性函数,仅仅通过函数的输入和输出数据难以寻找函数极值,这一类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 …...

剑指JUC原理-16.读写锁

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…...

文件改名:避免繁琐操作,利用筛选文件批量重命名技巧优化文件管理

在我们的日常生活和工作中,我们经常需要处理大量的文件,从文档、图片到音频和视频等。在这些情况下,一个高效的文件管理策略至关重要。文件重命名的必要性主要体现在两个方面。首先,对于大量文件,手动进行重命名不仅费…...

【CocoaPods安装环境和流程以及各种情况】

CocoaPods 环境HomebrewRubyrbenvRubyGems 和 Bundler安装Ruby管理Ruby更新Ruby替换Ruby镜像方式1方式2 CocoaPods安装CocoaPodsCocoaPods使用安装的一些问题单元测试引用问题 参考的链接 环境 Homebrew $ brew --config *可以发现打印有下面一行: Homebrew Ruby: …...

canvas与svg区别与实际应用

Canvas和SVG都是HTML5中的绘图技术。但是两者的实现方式和使用场景有所不同。 Canvas是HTML5中的绘图API,它提供了一套基于像素的绘图工具,可以通过JavaScript来实现动态的图形和动画。Canvas提供的绘图功能强大,可以绘制出复杂的图像和动画…...

rasa train nlu详解:1.1-train_nlu()函数

本文使用《使用ResponseSelector实现校园招聘FAQ机器人》中的例子,主要详解介绍train_nlu()函数中变量的具体值。 一.rasa/model_training.py/train_nlu()函数   train_nlu()函数实现,如下所示: def train_nlu(config: Text,nlu_data: Op…...

使用ResponseSelector实现校园招聘FAQ机器人

本文主要介绍使用ResponseSelector实现校园招聘FAQ机器人,回答面试流程和面试结果查询的FAQ问题。FAQ机器人功能分为业务无关的功能和业务相关的功能2类。 一.data/nlu.yml文件   与普通意图相比,ResponseSelector训练数据中的意图采用group/intent格…...

ENVI IDL:如何基于气象站点数据进行反距离权重插值?

01 前言 仅仅练习,大可使用ArcGIS或者已经封装好的python模块进行插值,此处仅仅从底层理解如何从公式和代码理解反距离权重插值的过程,从而更深刻的理解IDL的使用和插值的理解。 02 函数说明 2.1 Read_CSV()函数 官方语法如下&#xff1a…...

实战Leetcode(四)

Practice makes perfect! 实战一: 这个题由于我们不知道两个链表的长度我们也不知道它是否有相交的节点,所以我们的方法是先求出两个链表的长度,长度长的先走相差的步数,使得两个链表处于同一起点,两个链…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...

c# 局部函数 定义、功能与示例

C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

二维FDTD算法仿真

二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...

多模态学习路线(2)——DL基础系列

目录 前言 一、归一化 1. Layer Normalization (LN) 2. Batch Normalization (BN) 3. Instance Normalization (IN) 4. Group Normalization (GN) 5. Root Mean Square Normalization(RMSNorm) 二、激活函数 1. Sigmoid激活函数(二分类&…...

生成对抗网络(GAN)损失函数解读

GAN损失函数的形式: 以下是对每个部分的解读: 1. ⁡, ​ :这个部分表示生成器(Generator)G的目标是最小化损失函数。 :判别器(Discriminator)D的目标是最大化损失函数。 GAN的训…...