当前位置: 首页 > news >正文

[100天算法】-面试题 04.01.节点间通路(day 72)

题目描述

节点间通路。给定有向图,设计一个算法,找出两个节点之间是否存在一条路径。示例1:输入:n = 3, graph = [[0, 1], [0, 2], [1, 2], [1, 2]], start = 0, target = 2
输出:true
示例2:输入:n = 5, graph = [[0, 1], [0, 2], [0, 4], [0, 4], [0, 1], [1, 3], [1, 4], [1, 3], [2, 3], [3, 4]], start = 0, target = 4
输出 true
提示:节点数量n在[0, 1e5]范围内。
节点编号大于等于 0 小于 n。
图中可能存在自环和平行边。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/route-between-nodes-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

方法 1:图+DFS

思路

简单学习了下图,笔记。

  1. 建一个邻接表
  2. dfs 查找

邻接表

dfs 伪代码

如果当前顶点就是目标顶点:return true
否则:把当前顶点加入“已遍历”队列中let found = false 记录dfs邻接点是否能找到目标顶点遍历当前顶点的所有邻接点:如果这个邻接点是“未遍历”:继续dfs查找,只要有一个查找返回了true,found = truereturn found

代码

JavaScript Code

/*** @param {number} n* @param {number[][]} graph* @param {number} start* @param {number} target* @return {boolean}*/
var findWhetherExistsPath = function (n, graph, start, target) {// 建图const adjList = {};for (let i = 0; i < n; i++) {adjList[i] = new Set();}graph.forEach(edge => adjList[edge[0]].add(edge[1]));// dfsconst dfs = (start, target, adjList, visited) => {if (start === target) return true;visited[start] = true;const neighs = adjList[start];let found = false;neighs.forEach(neigh => {if (!visited[neigh]) {const res = dfs(neigh, target, adjList, visited);res && (found = res);}});return found;};return dfs(start, target, adjList, []);
};

复杂度分析

  • 时间复杂度:$O(V+E)$,V 是顶点数,E 是边的数量。
  • 空间复杂度:$O(V+E)$,V 是顶点数,E 是边的数量,邻接表的空间复杂度是 O(V+E),dfs 递归栈的空间复杂度是 O(V)。

相关文章:

[100天算法】-面试题 04.01.节点间通路(day 72)

题目描述 节点间通路。给定有向图&#xff0c;设计一个算法&#xff0c;找出两个节点之间是否存在一条路径。示例1:输入&#xff1a;n 3, graph [[0, 1], [0, 2], [1, 2], [1, 2]], start 0, target 2 输出&#xff1a;true 示例2:输入&#xff1a;n 5, graph [[0, 1], …...

linux_day02

1、链接&#xff1a;LN 一个点表示当前工作目录&#xff0c;两个点表示上一层工作目录&#xff1b; 目录的本质&#xff1a;文件&#xff08;该文件储存目录项&#xff0c;以链表的形式链接&#xff0c;每个结点都是目录项&#xff0c;创建文件相当于把目录项添加到链表中&…...

OpenCV-Python小应用(九):通过灰度直方图检测图像异常点

OpenCV-Python小应用&#xff08;九&#xff09;&#xff1a;通过灰度直方图检测图像异常点 前言前提条件相关介绍实验环境通过灰度直方图检测图像异常点代码实现输出结果 参考 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容&#xff…...

关于el-table+el-input+el-propover的封装

一、先放图片便于理解 需求&#xff1a; 1、el-input触发focus事件&#xff0c;弹出el-table(当然也可以为其添加搜索功能、分页) 2、el-table中的复选共能转化成单选共能 3、选择或取消的数据在el-input中动态显示 4、勾选数据后&#xff0c;因为分页过多&#xff0c;原先选好…...

基于Python+OpenCV+SVM车牌识别系统-车牌预处理系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介简介系统流程系统优势 二、功能三、系统四. 总结 一项目简介 ## PythonOpenCVSVM车牌识别系统介绍 简介 PythonOpenCVSVM车牌识别系统是一种基于计算机视…...

力扣第72题 编辑距离 (增 删 改) C++ 动态规划 附Java代码

题目 72. 编辑距离 中等 相关标签 字符串 动态规划 给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1&#xff1a; 输入&a…...

工业相机基本知识理解:工业相机IO接口,功耗和供电方式

I-input 相机接收外部信号&#xff0c;可用于触发相机&#xff08;硬触发&#xff09;&#xff0c;也可用于定制不同的 功能&#xff0c;例如使用不同信号宽度来改变相机的曝光时间。主要用于现场设 备控制相机使用&#xff0c;常常配合各种传感器使用 O-output 相机输出信号&a…...

数据库设计

数据库设计特点 数据库建设的基本规律&#xff1a;三分技术&#xff0c;七分管理&#xff0c;十二分基础数据结构&#xff08;数据&#xff09;设计和行为&#xff08;处理&#xff09;设计相结合&#xff1a;数据库设计应该和应用系统设计相结合 数据库设计方法 新奥尔良方…...

【react.js + hooks】使用 useLoading 控制加载

在页面上 loading&#xff08;加载&#xff09;的效果十分常见&#xff0c;在某些场景下&#xff0c;一个页面上甚至可能有特别多的 loading 存在&#xff0c;此时为每一个 loading 专门创建一个 state 显然太过繁琐&#xff0c;不如试试写一个 useLoading 来集中管理&#xff…...

Cordova系列之化繁为简:打造全场景适用的Cordova组件

前言 在我之前的文章 Cordova初探 的开篇中说到了Cordova在Android应用开发中的一个显著的局限性就是我们的Activity必须继承其提供的CordovaActivity。这种设计对于那些追求个性化UI设计的项目而言&#xff0c;显得尤为受限。 其实也可以理解&#xff0c;Cordova主要旨在为前…...

Flink之Catalog

Catalog Catalog概述Catalog分类 GenericInMemoryCatalogJdbcCatalog下载JAR包及使用重启操作创建Catalog查看与使用Catalog自动初始化catalog HiveCatalog下载JAR包及使用重启操作hive metastore服务创建Catalog查看与使用CatalogFlink与Hive中操作自动初始化catalog 用户自定…...

计算机网络——物理层-传输方式(串行传输、并行传输,同步传输、异步传输,单工、半双工和全双工通信)

目录 串行传输和并行传输 同步传输和异步传输 单工、半双工和全双工通信 串行传输和并行传输 串行传输是指数据是一个比特一个比特依次发送的。因此在发送端和接收端之间&#xff0c;只需要一条数据传输线路即可。 并行传输是指一次发送n个比特&#xff0c;而不是一个比特&…...

男科医院服务预约小程序的作用是什么

医院的需求度从来都很高&#xff0c;随着技术发展&#xff0c;不少科目随之衍生出新的医院的&#xff0c;比如男科医院、妇科医院等&#xff0c;这使得目标群体更加精准&#xff0c;同时也赋能用户可以快速享受到服务。 当然相应的男科医院在实际经营中也面临痛点&#xff1a;…...

有没有实时检测微信聊天图片的软件,只要微信收到了有二维码的图片就把它提取出来?

10-2 如果你有需要自动并且快速地把微信收到的二维码图片保存到指定文件夹的需求&#xff0c;那本文章非常适合你&#xff0c;本文章教你如何实现自动保存微信收到的二维码图片到你指定的文件夹中&#xff0c;助你快速扫码&#xff0c;比别人领先一步。 首先需要准备好的材料…...

core-site.xml,yarn-site.xml,hdfs-site.xml,mapred-site.xml配置

core-site.xml <?xml version"1.0" encoding"UTF-8"?> <?xml-stylesheet type"text/xsl" href"configuration.xsl"?> <!--Licensed under the Apache License, Version 2.0 (the "License");you may no…...

数据分析实战 | KNN算法——病例自动诊断分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 九、模型调参 十、模型改进 十一、模型预测 一、数据及分析对象 CSV文件——“bc_data.csv” 数据集链接&#xff1a;https://dow…...

JS实现数据结构与算法

队列 1、普通队列 利用数组push和shif 就可以简单实现 2、利用链表的方式实现队列 class MyQueue {constructor(){this.head nullthis.tail nullthis.length 0}add(value){let node {value}if(this.length 0){this.head nodethis.tail node}else{this.tail.next no…...

计算机毕业设计 基于SpringBoot的驾校管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…...

S7-1200PLC和SMART PLC开放式以太网通信(UDP双向通信)

S7-1200PLC的以太网通信UDP通信相关介绍还可以参考下面文章链接: 博途PLC开放式以太网通信TRCV_C指令应用编程(运动传感器UDP通信)-CSDN博客文章浏览阅读2.8k次。博途PLC开放式以太网通信TSENG_C指令应用,请参看下面的文章链接:博途PLC 1200/1500PLC开放式以太网通信TSEND_…...

作用域插槽slot-scope

一般用于组件封装&#xff0c;将使用props传入组件的数据再次调出来或者单纯调用组件中的数据。也可用于为组件某个部分自定义样式以及为某次使用组件自定义样式。 直接拿elementui的el-table举例&#xff1a; <template><el-table v-loading"loading&q…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...